Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation (2024)

1. Smedley P. L., Kinniburgh D. G. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry. 2002;17(5):517–568. doi:10.1016/S0883-2927(02)00018-5. [CrossRef] [Google Scholar]

2. Bhattacharya P., Jacks G., Ahmed K. M., Routh J., Khan A. A. Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology. 2002;69(4):538–545. doi:10.1007/s00128-002-0095-5. [PubMed] [CrossRef] [Google Scholar]

3. Bhattacharya P., Chatterjee D., Jacks G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: options for safe drinking water supply. International Journal of Water Resources Development. 1997;13(1):79–92. doi:10.1080/07900629749944. [CrossRef] [Google Scholar]

4. Bhattacharya P., Welch A. H., Stollenwerk K. G., McLaughlin M. J., Bundschuh J., Panaullah G. Arsenic in the environment: biology and chemistry. Science of the Total Environment. 2007;379(2-3):109–120. doi:10.1016/j.scitotenv.2007.02.037. [PubMed] [CrossRef] [Google Scholar]

5. Bundschuh J., Garcia M. E., Birke P., Cumbal L. H., Bhattacharya P., Matschullat J. Occurrence, health effects and remediation of arsenic in groundwaters of Latin America. In: Bhattacharya J., Matschullat A. B., Armientan M. A., et al., editors. Natural Arsenic in Groundwaters of Latin America. London, UK: Taylor & Francis; 2009. pp. 3–15. [Google Scholar]

6. Bhattacharya P., Hossain M., Rahman S. N., Robinson C., Nath B., Rahman M., Islam M. M., Von Brömssen M., Ahmed K. M., Jacks G., Chowdhury D., Jakariya M., Persson L. Å., Vahter M. Temporal and seasonal variability of arsenic in drinking water wells in Matlab, southeastern Bangladesh: a preliminary evaluation on the basis of a 4 year study. Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering. 2011;46(11):1177–1184. doi:10.1080/10934529.2011.598768. [PubMed] [CrossRef] [Google Scholar]

7. Ravenscroft P., Brammer H., Richards K. Arsenic Pollution: A Global Synthesis. West Sussex, UK: John Wiley & Sons; 2009. [Google Scholar]

8. USEPA National Primary Drinking Water Regulations: Arsenic and Clarifications to Compliance and New Source Contaminants Monitoring. Federal Register. 2001;40, CFR Parts 9:141–142. [Google Scholar]

9. WHO . Guidelines for Drinking-Water Quality. Vol. 4. World Health Organization; 2011. [PubMed] [Google Scholar]

10. USEPA Arsenic in Drinking Water. 2013, http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm.

11. Santra S. C., Samal A. C., Bhattacharya P., Banerjee S., Biswas A., Majumdar J. Arsenic in foodchain and community health risk: a study in gangetic west Bengal. Procedia Environmental Sciences. 2013;18:2–13. Proceedings of the International Symposium on Environmental Science and Technology (2013 ISEST) [Google Scholar]

12. Rai A., Tripathi P., Dwivedi S., Dubey S., Shri M., Kumar S., Tripathi P. K., Dave R., Kumar A., Singh R., Adhikari B., Bag M., Tripathi R. D., Trivedi P. K., Chakrabarty D., Tuli R. Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system. Chemosphere. 2011;82(7):986–995. doi:10.1016/j.chemosphere.2010.10.070. [PubMed] [CrossRef] [Google Scholar]

13. Brinkel J., Khan M. H., Kraemer A. A systematic review of arsenic exposure and its social and mental health effects with special reference to Bangladesh. International Journal of Environmental Research and Public Health. 2009;6(5):1609–1619. doi:10.3390/ijerph6051609. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

14. Stroud J. L., Norton G. J., Islam M. R., Dasgupta T., White R. P., Price A. H., Meharg A. A., McGrath S. P., Zhao F.-J. The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution. 2011;159(4):947–953. doi:10.1016/j.envpol.2010.12.016. [PubMed] [CrossRef] [Google Scholar]

15. Fendorf S., Michael H. A., van Geen A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science. 2010;328(5982):1123–1127. doi:10.1126/science.1172974. [PubMed] [CrossRef] [Google Scholar]

16. Mirlean N., Baisch P., Diniz D. Arsenic in groundwater of the Paraiba do Sul delta, Brazil: an atmospheric source? Science of the Total Environment. 2014;482-483:148–156. [PubMed] [Google Scholar]

17. Mukherjee A., Sengupta M. K., Hossain M. A., Ahamed S., Das B., Nayak B., Lodh D., Rahman M. M., Chakraborti D. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. Journal of Health, Population and Nutrition. 2006;24(2):142–163. [PubMed] [Google Scholar]

18. Chakraborti D., Rahman M. M., Das B., Murrill M., Dey S., Chandra Mukherjee S., Dhar R. K., Biswas B. K., Chowdhury U. K., Roy S., Sorif S., Selim M., Quamruzzaman Q. Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Research. 2010;44(19):5789–5802. doi:10.1016/j.watres.2010.06.051. [PubMed] [CrossRef] [Google Scholar]

19. Shukla D. P., Dubey C. S., Singh N. P., Tajbakhsh M., Chaudhry M. Sources and controls of Arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology. 2010;395(1-2):49–66. doi:10.1016/j.jhydrol.2010.10.011. [CrossRef] [Google Scholar]

20. Sthiannopkao S., Kim K. W., Sotham S., Choup S. Arsenic and manganese in tube well waters of Prey Veng and Kandal Provinces, Cambodia. Applied Geochemistry. 2008;23(5):1086–1093. doi:10.1016/j.apgeochem.2008.01.001. [CrossRef] [Google Scholar]

21. Nriagu J., Bhattacharya P., Mukherjee A., Bundschuh J., Zevenhoven R., Loeppert R. Arsenic in soil and groundwater: an overview. In: Bhattacharya P., Mukherjee A., Bundschuh J., Zevenhoven R., Loeppert R., editors. Arsenic in Soil and Groundwater Environment. Amsterdam, The Netherlands: Elsevier; 2007. pp. 3–60. [Google Scholar]

22. Khan M. A., Ho Y.-S. Arsenic in drinking water: a review on toxicological effects, mechanism of accumulation and remediation. Asian Journal of Chemistry. 2011;23(5):1889–1901. [Google Scholar]

23. Gómez J. J., Lillo J., Sahún B. Naturally occurring arsenic in groundwater and identification of the geochemical sources in the Duero Cenozoic Basin, Spain. Environmental Geology. 2006;50(8):1151–1170. doi:10.1007/s00254-006-0288-z. [CrossRef] [Google Scholar]

24. Cutler W. G., Brewer R. C., El-Kadi A., Hue N. V., Niemeyer P. G., Peard J., Ray C. Bioaccessible arsenic in soils of former sugar cane plantations, Island of Hawaii. Science of the Total Environment. 2013;442:177–188. doi:10.1016/j.scitotenv.2012.09.081. [PubMed] [CrossRef] [Google Scholar]

25. Tuli R., Chakrabarty D., Trivedi P. K., Tripathi R. D. Recent advances in arsenic accumulation and metabolism in rice. Molecular Breeding. 2010;26(2):307–323. doi:10.1007/s11032-010-9412-6. [CrossRef] [Google Scholar]

26. Chen Y., Parvez F., Gamble M., Islam T., Ahmed A., Argos M., Graziano J. H., Ahsan H. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh. Toxicology and Applied Pharmacology. 2009;239(2):184–192. doi:10.1016/j.taap.2009.01.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

27. Bissen M., Frimmel F. H. Arsenic: a review—part I—: occurrence, toxicity, speciation, mobility. Acta Hydrochimica et Hydrobiologica. 2003;31(1):9–18. doi:10.1002/aheh.200390025. [CrossRef] [Google Scholar]

28. Matschullat J. Arsenic in the geosphere—a review. Science of the Total Environment. 2000;249(1–3):297–312. doi:10.1016/S0048-9697(99)00524-0. [PubMed] [CrossRef] [Google Scholar]

29. Polizzotto M. L., Harvey C. F., Li G., Badruzzman B., Ali A., Newville M., Sutton S., Fendorf S. Solid-phases and desorption processes of arsenic within Bangladesh sediments. Chemical Geology. 2006;228(1—3):97–111. doi:10.1016/j.chemgeo.2005.11.026. [CrossRef] [Google Scholar]

30. Borba R. P., Figueiredo B. R., Matschullat J. Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology. 2003;44(1):39–52. [Google Scholar]

31. Charlet L., Chakraborty S., Appelo C. A. J., Roman-Ross G., Nath B., Ansari A. A., Lanson M., Chatterjee D., Mallik S. B. Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: a field and reactive transport modeling study. Applied Geochemistry. 2007;22(7):1273–1292. doi:10.1016/j.apgeochem.2006.12.022. [CrossRef] [Google Scholar]

32. Islam A. M. Membrane distillation process for pure water and removal of arsenic [Master of Science thesis for International Master's Program in Applied Environmental Measurement Techniques] Gothenburg, Sweden: Chalmers University of Technology; 2004. [Google Scholar]

33. Bhowmick S., Nath B., Halder D., Biswas A., Majumder S., Mondal P., Chakraborty S., Nriagu J., Bhattacharya P., Iglesias M., Roman-Ross G., Guha Mazumder D., Bundschuh J., Chatterjee D. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences. Journal of Hazardous Materials. 2013;262:915–923. doi:10.1016/j.jhazmat.2012.07.014. [PubMed] [CrossRef] [Google Scholar]

34. Ferguson J. F., Gavis J. A review of the arsenic cycle in natural waters. Water Research. 1972;6(11):1259–1274. doi:10.1016/0043-1354(72)90052-8. [CrossRef] [Google Scholar]

35. Cullen W. R., Reimer K. J. Arsenic speciation in the environment. Chemical Reviews. 1989;89(4):713–764. doi:10.1021/cr00094a002. [CrossRef] [Google Scholar]

36. Welch A. H., Lico M. S., Hughes J. L. Arsenic in ground water of the Western United States. Ground Water. 1988;26(3):333–347. doi:10.1111/j.1745-6584.1988.tb00397.x. [CrossRef] [Google Scholar]

37. Welch A. H., Westjohn D. B., Helsel D. R., Wanty R. B. Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water. 2000;38(4):589–604. doi:10.1111/j.1745-6584.2000.tb00251.x. [CrossRef] [Google Scholar]

38. Mok W.-M., Wai C. M. Distribution and mobilization of arsenic and antimony species in the Coeur D'Alene River, Idaho. Environmental Science and Technology. 1990;24(1):102–108. doi:10.1021/es00071a012. [CrossRef] [Google Scholar]

39. Andersen L. C. D., Bruland K. W. Biogeochemistry of arsenic in natural waters: the importance of methylated species. Environmental Science and Technology. 1991;25(3):420–427. doi:10.1021/es00015a007. [CrossRef] [Google Scholar]

40. Kim M.-J., Nriagu J., Haack S. Arsenic behavior in newly drilled wells. Chemosphere. 2003;52(3):623–633. doi:10.1016/S0045-6535(03)00244-3. [PubMed] [CrossRef] [Google Scholar]

41. Haque S., Johannesson K. H. Arsenic concentrations and speciation along a groundwater flow path: the Carrizo Sand aquifer, Texas, USA. Chemical Geology. 2006;228(1–3):57–71. doi:10.1016/j.chemgeo.2005.11.019. [CrossRef] [Google Scholar]

42. Haque S. E., Johannesson K. H. Concentrations and speciation of arsenic along a groundwater flow-path in the Upper Floridan aquifer, Florida, USA. Environmental Geology. 2006;50(2):219–228. doi:10.1007/s00254-006-0202-8. [CrossRef] [Google Scholar]

43. Haque S., Ji J., Johannesson K. H. Evaluating mobilization and transport of arsenic in sediments and groundwaters of Aquia aquifer, Maryland, USA. Journal of Contaminant Hydrology. 2008;99(1–4):68–84. doi:10.1016/j.jconhyd.2008.03.003. [PubMed] [CrossRef] [Google Scholar]

44. Jain C. K., Ali I. Arsenic: occurrence, toxicity and speciation techniques. Water Research. 2000;34(17):4304–4312. doi:10.1016/S0043-1354(00)00182-2. [CrossRef] [Google Scholar]

45. Hering J. G., Kneebone P. E. Environmental Chemistry of Arsenic. New York, NY, USA: Marcel Dekker; 2001. Biogeochemical controls on arsenic occurrence and mobility in water supplies; pp. 155–182. [Google Scholar]

46. Guo H., Zhang B., Li Y., Berner Z., Tang X., Norra S., Stüben D. Hydrogeological and biogeochemical constrains of arsenic mobilization in shallow aquifers from the Hetao basin, Inner Mongolia. Environmental Pollution. 2011;159(4):876–883. doi:10.1016/j.envpol.2010.12.029. [PubMed] [CrossRef] [Google Scholar]

47. Murcott S. Arsenic Contamination in the World: An International Sourcebook. London, UK: IWA Publishing; 2012. [Google Scholar]

48. Petrick J. S., Ayala-Fierro F., Cullen W. R., Carter D. E., Vasken Aposhian H. Monomethylarsonous acid (MMAIII) is more toxic than arsenite in chang human hepatocytes. Toxicology and Applied Pharmacology. 2000;163(2):203–207. doi:10.1006/taap.1999.8872. [PubMed] [CrossRef] [Google Scholar]

49. Gailer J. Arsenic-selenium and mercury-selenium bonds in biology. Coordination Chemistry Reviews. 2007;251(1-2):234–254. doi:10.1016/j.ccr.2006.07.018. [CrossRef] [Google Scholar]

50. Liu Z., Shen J., Carbrey J. M., Mukhopadhyay R., Agre P., Rosen B. P. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(9):6053–6058. doi:10.1073/pnas.092131899. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

51. Villa-Bellosta R., Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate. Toxicology and Applied Pharmacology. 2008;232(1):125–134. doi:10.1016/j.taap.2008.05.026. [PubMed] [CrossRef] [Google Scholar]

52. Huang R.-N., Lee T.-C. Cellular uptake of trivalent arsenite and pentavalent arsenate in KB cells cultured in phosphate-free medium. Toxicology and Applied Pharmacology. 1996;136(2):243–249. doi:10.1006/taap.1996.0031. [PubMed] [CrossRef] [Google Scholar]

53. Kojima C., Ramirez D. C., Tokar E. J., Himeno S., Drobná Z., Stýblo M., Mason R. P., Waalkes M. P. Requirement of arsenic biomethylation for oxidative DNA damage. Journal of the National Cancer Institute. 2009;101(24):1670–1681. doi:10.1093/jnci/djp414. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

54. Challenger F. Biological methylation. Chemical Reviews. 1945;36(3):315–361. doi:10.1021/cr60115a003. [CrossRef] [Google Scholar]

55. Zakharyan R. A., Aposhian H. V. Arsenite methylation by methylvitamin B12 and glutathione does not require an enzyme. Toxicology and Applied Pharmacology. 1999;154(3):287–291. doi:10.1006/taap.1998.8587. [PubMed] [CrossRef] [Google Scholar]

56. Hayakawa T., Kobayashi Y., Cui X., Hirano S. A. A new metabolic pathway of arsenite: Arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Archives in Toxicology. 2005;79(4):183–191. doi:10.1007/s00204-004-0620-x. [PubMed] [CrossRef] [Google Scholar]

57. Rehman K., Naranmandura H. Arsenic metabolism and thioarsenicals. Metallomics. 2012;4(9):881–892. doi:10.1039/c2mt00181k. [PubMed] [CrossRef] [Google Scholar]

58. Naranmandura H., Suzuki N., Suzuki K. T. Trivalent arsenicals are bound to proteins during reductive methylation. Chemical Research in Toxicology. 2006;19(8):1010–1018. doi:10.1021/tx060053f. [PubMed] [CrossRef] [Google Scholar]

59. Devesa V., Del Razo L. M., Adair B., Drobná Z., Waters S. B., Hughes M. F., Stýblo M., Thomas D. J. Comprehensive analysis of arsenic metabolites by pH-specific hydride generation atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry. 2004;19(11):1460–1467. doi:10.1039/b407388f. [CrossRef] [Google Scholar]

60. Tapio S., Grosche B. Arsenic in the aetiology of cancer. Mutation Research-Genetic Toxicology and Environmental Mutagenesis. 2006;612:215–246. [PubMed] [Google Scholar]

61. Yoshida T., Yamauchi H., Fan Sun G. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicology and Applied Pharmacology. 2004;198(3):243–252. doi:10.1016/j.taap.2003.10.022. [PubMed] [CrossRef] [Google Scholar]

62. Shi H., Shi X., Liu K. J. Oxidative mechanism of arsenic toxicity and carcinogenesis. Molecular and Cellular Biochemistry. 2004;255(1-2):67–78. doi:10.1023/B:MCBI.0000007262.26044.e8. [PubMed] [CrossRef] [Google Scholar]

63. Wang T.-S., Hsu T.-Y., Chung C.-H., Wang A. S. S., Bau D.-T., Jan K.-Y. Arsenite induces oxidative DNA adducts and DNA-protein cross-links in mammalian cells. Free Radical Biology and Medicine. 2001;31(3):321–330. doi:10.1016/S0891-5849(01)00581-0. [PubMed] [CrossRef] [Google Scholar]

64. Suzuki K. T., Kurasaki K., Suzuki N. Selenocysteine β-lyase and methylselenol demethylase in the metabolism of Se-methylated selenocompounds into selenide. Biochimica et Biophysica Acta—General Subjects. 2007;1770(7):1053–1061. doi:10.1016/j.bbagen.2007.03.007. [PubMed] [CrossRef] [Google Scholar]

65. Zhang T.-C., Schmitt M. T., Mumford J. L. Effects of arsenic on telomerase and telomeres in relation to cell proliferation and apoptosis in human keratinocytes and leukemia cells in vitro. Carcinogenesis. 2003;24(11):1811–1817. doi:10.1093/carcin/bgg141. [PubMed] [CrossRef] [Google Scholar]

66. Benbrahim-Tallaa L., Waterland R. A., Styblo M., Achanzar W. E., Webber M. M., Waalkes M. P. Molecular events associated with arsenic-induced malignant transformation of human prostatic epithelial cells: aberrant genomic DNA methylation and K-ras oncogene activation. Toxicology and Applied Pharmacology. 2005;206(3):288–298. doi:10.1016/j.taap.2004.11.017. [PubMed] [CrossRef] [Google Scholar]

67. Gentry P. R., McDonald T. B., Sullivan D. E., Shipp A. M., Yager J. W., Clewell H. J., III Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. Environmental and Molecular Mutagenesis. 2010;51(1):1–14. doi:10.1002/em.20505. [PubMed] [CrossRef] [Google Scholar]

68. Sharma A. K., Tjell J. C., Mosbæk H. Health effects from arsenic in groundwater of the Bengal delta: effects of iron and water storage practices. Environmental Geosciences. 2006;13(1):17–29. doi:10.1097/01.mrr.00001855947.56810.fc. [CrossRef] [Google Scholar]

69. Wang L., Kou M.-C., Weng C.-Y., Hu L.-W., Wang Y.-J., Wu M.-J. Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF -κB, and MAPK pathways. Archives of Toxicology. 2012;86(6):879–896. doi:10.1007/s00204-012-0845-z. [PubMed] [CrossRef] [Google Scholar]

70. Sinha D., Biswas J., Bishayee A. Nrf2-mediated redox signaling in arsenic carcinogenesis: a review. Archives of Toxicology. 2013;87(2):383–396. doi:10.1007/s00204-012-0920-5. [PubMed] [CrossRef] [Google Scholar]

71. Shi H., Hudson L. G., Ding W., Wang S., Cooper K. L., Liu S., Chen Y., Shi X., Liu K. J. Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chemical Research in Toxicology. 2004;17(7):871–878. doi:10.1021/tx049939e. [PubMed] [CrossRef] [Google Scholar]

72. Wei M., Wanibuchi H., Morimura K., Iwai S., Yoshida K., Endo G., Nakae D., f*ckushima S. Carcinogenicity of dimethylarsinic acid in male F344 rats and genetic alterations in induced urinary bladder tumors. Carcinogenesis. 2002;23(8):1387–1397. doi:10.1093/carcin/23.8.1387. [PubMed] [CrossRef] [Google Scholar]

73. Centeno J. A., Mullick F. G., Martinez L., Page N. P., Gibb H., Longfellow D., Thompson C., Ladich E. R. Pathology related to chronic arsenic exposure. Environmental Health Perspectives. 2002;110(5):883–886. doi:10.1289/ehp.02110s5883. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

74. Sharma A. K., Tjell J. C., Sloth J. J., Holm P. E. Review of arsenic contamination , exposure through water and food and low cost mitigation options for rural areas. Applied Geochemistry. 2014;41:1–33. doi:10.1016/j.apgeochem.2013.11.013. [CrossRef] [Google Scholar]

75. Paul D. S., Harmon A. W., Devesa V., Thomas D. J., Stýblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environmental Health Perspectives. 2007;115(5):734–742. doi:10.1289/ehp.9867. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

76. Douillet C., Currier J., Saunders J., Bodnar W. M., Matoušek T., Stýblo M. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicology and Applied Pharmacology. 2013;267(1):11–15. doi:10.1016/j.taap.2012.12.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Navas-Acien A., Silbergeld E. K., Streeter R. A., Clark J. M., Burke T. A., Guallar E. Arsenic exposure and type 2 diabetes: a systematic review of the experimental and epidemiologic evidence. Environmental Health Perspectives. 2006;114(5):641–648. doi:10.1289/ehp.8551. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

78. Abhyankar L. N., Jones M. R., Guallar E., Navas-Acien A. Arsenic exposure and hypertension: a systematic review. Environmental Health Perspectives. 2012;120(4):494–500. doi:10.1289/ehp.1103988. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

79. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochemical Journal. 2007;401(1):1–11. doi:10.1042/BJ20061131. [PubMed] [CrossRef] [Google Scholar]

80. Nesnow S., Roop B. C., Lambert G., Kadiiska M., Mason R. P., Cullen W. R., Mass M. J. DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chemical Research in Toxicology. 2002;15(12):1627–1634. doi:10.1021/tx025598y. [PubMed] [CrossRef] [Google Scholar]

81. Eblin K. E., Bowen M. E., Cromey D. W., Bredfeldt T. G., Mash E. A., Lau S. S., Gandolfi A. J. Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicology and Applied Pharmacology. 2006;217(1):7–14. doi:10.1016/j.taap.2006.07.004. [PubMed] [CrossRef] [Google Scholar]

82. McKenzie R. C., Arthur J. R., Beckett G. J. Selenium and the regulation of cell signaling, growth, and survival: molecular and mechanistic aspects. Antioxidants & Redox Signaling. 2002;4(2):339–351. doi:10.1089/152308602753666398. [PubMed] [CrossRef] [Google Scholar]

83. Selvaraj V., Tomblin J., Armistead M. Y., Murray E. Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage. Ecotoxicology and Environmental Safety. 2013;87:80–88. doi:10.1016/j.ecoenv.2012.09.028. [PubMed] [CrossRef] [Google Scholar]

84. Sies H., de Groot H. Role of reactive oxygen species in cell toxicity. Toxicology Letters. 1992;64-65:547–551. doi:10.1016/0378-4274(92)90230-H. [PubMed] [CrossRef] [Google Scholar]

85. Chou W.-C., Jie C., Kenedy A. A., Jones R. J., Trush M. A., Dang C. V. Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(13):4578–4583. doi:10.1073/pnas.0306687101. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

86. Kim T.-S., Jeong D.-W., Byung Y. Y., Ick Y. K. Dysfunction of rat liver mitochondria by selenite: induction of mitochondrial permeability transition through thiol-oxidation. Biochemical and Biophysical Research Communications. 2002;294(5):1130–1137. doi:10.1016/S0006-291X(02)00612-5. [PubMed] [CrossRef] [Google Scholar]

87. Eun H. K., Sohn S., Hyuk J. K., Kim S. U., Kim M.-J., Lee S.-J., Kyeong S. C. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Research. 2007;67(13):6314–6324. doi:10.1158/0008-5472.CAN-06-4217. [PubMed] [CrossRef] [Google Scholar]

88. Shen H.-M., Yang C.-F., Ding W.-X., Liu J., Ong C.-N. Superoxide radical-initiated apoptotic signalling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radical Biology & Medicine. 2001;30(1):9–21. doi:10.1016/S0891-5849(00)00421-4. [PubMed] [CrossRef] [Google Scholar]

89. Shen H.-M., Liu Z.-G. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radical Biology and Medicine. 2006;40(6):928–939. doi:10.1016/j.freeradbiomed.2005.10.056. [PubMed] [CrossRef] [Google Scholar]

90. Suzuki Y. J., Forman H. J., Sevanian A. Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine. 1997;22(1-2):269–285. doi:10.1016/S0891-5849(96)00275-4. [PubMed] [CrossRef] [Google Scholar]

91. Apel K., Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology. 2004;55:373–399. doi:10.1146/annurev.arplant.55.031903.141701. [PubMed] [CrossRef] [Google Scholar]

92. Huang C., Ma W.-Y., Li J., Dong Z. Arsenic induces apoptosis through a c-Jun NH2-terminal kinase- dependent, p53-independent pathway. Cancer Research. 1999;59(13):3053–3058. [PubMed] [Google Scholar]

93. Yih L.-H., Lee T.-C. Arsenite induces p53 accumulation through an ATM-dependent pathway in human fibroblasts. Cancer Research. 2000;60(22):6346–6352. [PubMed] [Google Scholar]

94. Amundson S. A., Myers T. G., Fornace A. J., Jr. Roles for p53 in growth arrest and apoptosis: Putting on the brakes after genotoxic stress. Oncogene. 1998;17(25):3287–3299. [PubMed] [Google Scholar]

95. Ryan K. M., Phillips A. C., Vousden K. H. Regulation and function of the p53 tumor suppressor protein. Current Opinion in Cell Biology. 2001;13(3):332–337. doi:10.1016/S0955-0674(00)00216-7. [PubMed] [CrossRef] [Google Scholar]

96. Bargonetti J., Manfredi J. J. Multiple roles of the tumor suppressor p53. Current Opinion in Oncology. 2002;14(1):86–91. doi:10.1097/00001622-200201000-00015. [PubMed] [CrossRef] [Google Scholar]

97. Kircelli F., Akay C., Gazitt Y. Arsenic trioxide induces p53-dependent apoptotic signals in myeloma cells with SiRNA-silenced p53: MAP kinase pathway is preferentially activated in cells expressing inactivated p53. International Journal of Oncology. 2007;30(4):993–1001. [PubMed] [Google Scholar]

98. Vogelstein B., Lane D., Levine A. J. Surfing the p53 network. Nature. 2000;408(6810):307–310. doi:10.1038/35042675. [PubMed] [CrossRef] [Google Scholar]

99. Akay C., Thomas C., III, Gazitt Y. Arsenic trioxide and pacl*taxel induce apoptosis by different mechanisms. Cell Cycle. 2004;3(3):324–334. [PubMed] [Google Scholar]

100. Crighton D., Wilkinson S., O'Prey J., Syed N., Smith P., Harrison P. R., Gasco M., Garrone O., Crook T., Ryan K. M. DRAM, a p53- induced modulator of autophagy, is critical for apoptosis. Cell. 2006;126(1):121–134. doi:10.1016/j.cell.2006.05.034. [PubMed] [CrossRef] [Google Scholar]

101. Lu J., Jiang C., Kaeck M., Ganther H., Vadhanavikit S., Ip C., Thompson H. Dissociation of the genotoxic and growth inhibitory effects of selenium. Biochemical Pharmacology. 1995;50(2):213–219. doi:10.1016/0006-2952(95)00119-K. [PubMed] [CrossRef] [Google Scholar]

102. Valdiglesias V., Pásaro E., Méndez J., Laffon B. In vitro evaluation of selenium genotoxic, cytotoxic, and protective effects: a review. Archives of Toxicology. 2010;84(5):337–351. doi:10.1007/s00204-009-0505-0. [PubMed] [CrossRef] [Google Scholar]

103. Hei T. K., Filipic M. Role of oxidative damage in the genotoxicity of arsenic. Free Radical Biology & Medicine. 2004;37(5):574–581. doi:10.1016/j.freeradbiomed.2004.02.003. [PubMed] [CrossRef] [Google Scholar]

104. Ramana C. V., Boldogh I., Izumi T., Mitra S. Activation of apurinic/apyrimidinic endonuclease in human cells by reactive oxygen species and its correlation with their adaptive response to genotoxicity of free radicals. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(9):5061–5066. doi:10.1073/pnas.95.9.5061. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

105. Hartwig A. Zinc finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxidants and Redox Signaling. 2001;3(4):625–634. doi:10.1089/15230860152542970. [PubMed] [CrossRef] [Google Scholar]

106. Zhou X., Sun X., Cooper K. L., Wang F., Liu K. J., Hudson L. G. Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. The Journal of Biological Chemistry. 2011;286(26):22855–22863. doi:10.1074/jbc.M111.232926. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

107. Ho E. Zinc deficiency, DNA damage and cancer risk. Journal of Nutritional Biochemistry. 2004;15(10):572–578. doi:10.1016/j.jnutbio.2004.07.005. [PubMed] [CrossRef] [Google Scholar]

108. Andrew A. S., Karagas M. R., Hamilton J. W. Decreased DNA repair gene expression among individuals exposed to arsenic in United States drinking water. International Journal of Cancer. 2003;104(3):263–268. doi:10.1002/ijc.10968. [PubMed] [CrossRef] [Google Scholar]

109. Andrew A. S., Burgess J. L., Meza M. M., Demidenko E., Waugh M. G., Hamilton J. W., Karagas M. R. Arsenic exposure is associated with decreased DNA repair in vitro and in individuals exposed to drinking water arsenic. Environmental Health Perspectives. 2006;114(8):1193–1198. doi:10.1289/ehp.9008. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

110. Sciandrello G., Caradonna F., Mauro M., Barbata G. Arsenic-induced DNA hypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis. 2004;25(3):413–417. doi:10.1093/carcin/bgh029. [PubMed] [CrossRef] [Google Scholar]

111. Zhao C. Q., Young M. R., Diwan B. A., Coogan T. P., Waalkes M. P. Association of arsenic-induced malignant transformation with DNA hypomethylation and aberrant gene expression. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(20):10907–10912. doi:10.1073/pnas.94.20.10907. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

112. Stýblo M., Thomas D. J. In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochemical Pharmacology. 1995;49(7):971–977. doi:10.1016/0006-2952(95)00008-N. [PubMed] [CrossRef] [Google Scholar]

113. Lin S., Cullen W. R., Thomas D. J. Methylarsenicals and arsinothiols are potent inhibitors of mouse liver thioredoxin reductase. Chemical Research in Toxicology. 1999;12(10):924–930. doi:10.1021/tx9900775. [PubMed] [CrossRef] [Google Scholar]

114. Zhong C. X., Mass M. J. Both hypomethylation and hypermethylation of DNA associated with arsenite exposure in cultures of human cells identified by methylation-sensitive arbitrarily-primed PCR. Toxicology Letters. 2001;122(3):223–234. doi:10.1016/S0378-4274(01)00365-4. [PubMed] [CrossRef] [Google Scholar]

115. Jiang X. H., Chun Y., Wong B., et al. Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of P53 and activation of caspase-3. International Journal of Cancer. 2001;91:173–179. [PubMed] [Google Scholar]

116. Heijnen H. Arsenic Contamination: Bangladesh Perspective. Dhaka, Bangladesh: ITN; 2003. Criteria for selection of technologies for arsenic mitigation; pp. 429–441. [Google Scholar]

117. BGS DPHE/BGS National Hydrochemical Survey. 2004, http://www.bgs.ac.uk/research/groundwater/health/arsenic/Bangladesh/mapsnhs.html.

118. DPHE . Proceedings of: Deeper Aquifers of Bangladesh—A Review Meeting. Department of Public Health Engineering with support from UNICEF and the Water & Sanitation Program; [Google Scholar]

119. Winkel L. H. E., Trang P. T. K., Lan V. M., Stengel C., Amini M., Ha N. T., Viet P. H., Berg M. Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(4):1246–1251. doi:10.1073/pnas.1011915108. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

120. Hoque M. A., Burgess W. G. 14C dating of deep groundwater in the Bengal Aquifer System, Bangladesh: implications for aquifer anisotropy, recharge sources and sustainability. Journal of Hydrology. 2012;444-445:209–220. doi:10.1016/j.jhydrol.2012.04.022. [CrossRef] [Google Scholar]

121. Hug S. J., Gaertner D., Roberts L. C., Schirmer M., Ruettimann T., Rosenberg T. M., Badruzzaman A. B. M., Ashraf Ali M. Avoiding high concentrations of arsenic, manganese and salinity in deep tubewells in Munshiganj District, Bangladesh. Applied Geochemistry. 2011;26(7):1077–1085. doi:10.1016/j.apgeochem.2011.03.012. [CrossRef] [Google Scholar]

122. Chakraborti D., Sengupta M. K., Rahman M. M., Ahamed S., Chowdhury U. K., Oller A., Bates H., Hossain M. A., Mukherjee S. C., Pati S., Saha K. C., Dutta R. N., Quamruzzaman Q. Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring. 2004;6(6):74N–83N. doi:10.1039/b406573p. [PubMed] [CrossRef] [Google Scholar]

123. Ahmed M. F., Ahuja S., Alauddin M., Hug S. J., Lloyd J. R., Pfaff A., Pichler T., Saltikov C., Stute M., Van Geen A. Ensuring safe drinking water in Bangladesh. Science. 2006;314(5806):1687–1688. doi:10.1126/science.1133146. [PubMed] [CrossRef] [Google Scholar]

124. Rahman M. H., Ishiga H. Arsenic pollution in soil and groundwater of Bangladesh. Proceedings of the International Conference on Energy and Environment; 2003; pp. 1626–1632. [Google Scholar]

125. Rahman M. M., Mandal B. K., Roy Chowdhury T., Sengupta M. K., Chowdhury U. K., Lodh D., Chanda C. R., Basu G. K., Mukherjee S. C., Saha K. C., Chakraborti D. Arsenic groundwater contamination and sufferings of people in North 24-Parganas, one of the nine arsenic affected districts of West Bengal, India. Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering. 2003;38(1):25–59. doi:10.1081/ESE-120016658. [PubMed] [CrossRef] [Google Scholar]

126. Ahmed F., Rahman M. Low-cost water supply technologies. In: Ahmed F., Rahman M., editors. Water Supply & Sanitation: Rural and Low Income Urban Communities. Dhaka, Bangladesh: ITN-Bangladesh; 2003. pp. 407–441. [Google Scholar]

127. Warner N. R., Levy J., Harpp K., Farruggia F. Drinking water quality in Nepal's Kathmandu Valley: a survey and assessment of selected controlling site characteristics. Hydrogeology Journal. 2008;16(2):321–334. doi:10.1007/s10040-007-0238-1. [CrossRef] [Google Scholar]

128. Bennett H. B., Shantz A., Shin G., Sampson M. L., Meschke J. S. Characterisation of the water quality from open and rope-pump shallow wells in rural Cambodia. Water Science and Technology. 2010;61(2):473–479. doi:10.2166/wst.2010.817. [PubMed] [CrossRef] [Google Scholar]

129. Hira-Smith M. M., Yuan Y., Savarimuthu X., Liaw J., Hira A., Green C., Hore T., Chakraborty P., von Ehrenstein O. S., Smith A. H. Arsenic concentrations and bacterial contamination in a pilot shallow dugwell program in West Bengal, India. Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering. 2007;42(1):89–95. doi:10.1080/10934520601015834. [PubMed] [CrossRef] [Google Scholar]

130. DPHE National Policy for Arsenic Mitigation 2004, http://www.dphe.gov.bd/index.php?option=com_content&view=article&id=80&Itemid=85.

131. Smith A. H., Lingas E. O., Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bulletin of the World Health Organization. 2003;78(9):1093–1103. [PMC free article] [PubMed] [Google Scholar]

132. Joya S. A., Mostofa G., Yousuf J., Islam A., Elahi A., Mahiuddin G., Rahman M., Qaumruzzaman Q., Wilson R. One solution to the arsenic problem: a return to surface (improved dug) wells. Journal of Health, Population and Nutrition. 2006;24(3):363–375. [PMC free article] [PubMed] [Google Scholar]

133. Hoque B. A., Hoque M. M., Ahmed T., Islam S., Azad A. K., Ali N., Hossain M., Hossain M. S. Demand-based water options for arsenic mitigation: an experience from rural Bangladesh. Public Health. 2004;118(1):70–77. doi:10.1016/S0033-3506(03)00135-5. [PubMed] [CrossRef] [Google Scholar]

134. Milton A. H., Smith W., Dear K., Ng J., Sim M., Ranmuthugala G., Lokuge K., Caldwell B., Rahman A., Rahman H., Shraim A., Huang D., Shahidullah S. M. A Randomised intervention trial to assess two arsenic mitigation options in Bangladesh. Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering. 2007;42(12):1897–1908. doi:10.1080/10934520701567197. [PubMed] [CrossRef] [Google Scholar]

135. Ahmed M. F., Shamsuddin S. A. J., Mahmud S. G., Rashid H., Deere D., Howard G. Risk Assessment of Arsenic Mitigation Options (RAAMO) Dhaka, Bangladesh: APSU; 2005. [PMC free article] [PubMed] [Google Scholar]

136. Yokota H., Tanabe K., Sezaki M., Akiyoshi Y., Miyata T., Kawahara K., Tsushima S., Hironaka H., Takafuji H., Rahman M., Ahmad S. A., Sayed M. H. S. U., Faruquee M. H. Arsenic contamination of ground and pond water and water purification system using pond water in Bangladesh. Engineering Geology. 2001;60(1'4):323–331. doi:10.1016/S0013-7952(00)00112-5. [CrossRef] [Google Scholar]

137. DPHE . Union Wise Water Technology Mapping [Dhaka Circle] Vol. 1. Dhaka, Bangladesh: DPHE Publication; 2008. [Google Scholar]

138. Islam M. A., Sakakibara H., Karim M. R., Sekine M., Mahmud Z. H. Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh. Journal of Water and Health. 2011;9(2):415–428. doi:10.2166/wh.2011.114. [PubMed] [CrossRef] [Google Scholar]

139. Karim M. R. Microbial contamination and associated health burden of rainwater harvesting in Bangladesh. Water Science and Technology. 2010;61(8):2129–2135. doi:10.2166/wst.2010.031. [PubMed] [CrossRef] [Google Scholar]

140. Masscheleyn P. H., Delaune R. D., Patrick W. H., Jr. Effect of redox potential and pH on arsenic speciation and solubility in a contaminated soil. Environmental Science and Technology. 1991;25(8):1414–1419. doi:10.1021/es00020a008. [CrossRef] [Google Scholar]

141. Ghurye G., Clifford D. As(III) oxidation using chemical and solid-phase oxidants. Jornal of American Water Works Association. 2004;96(1):84–96. [Google Scholar]

142. Leupin O. X., Hug S. J. Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Research. 2005;39(9):1729–1740. doi:10.1016/j.watres.2005.02.012. [PubMed] [CrossRef] [Google Scholar]

143. Lee Y., Um I.-H., Yoon J. Arsenic (III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic (V) by iron (III) coagulation. Environmental Science and Technology. 2003;37(24):5750–5756. doi:10.1021/es034203+. [PubMed] [CrossRef] [Google Scholar]

144. Dodd M. C., Vu N. D., Ammann A., Le V. C., Kissner R., Pham H. V., Cao T. H., Berg M., Von Gunten U. Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine, chloramines, and ozone: relevance to drinking water treatment. Environmental Science and Technology. 2006;40(10):3285–3292. doi:10.1021/es0524999. [PubMed] [CrossRef] [Google Scholar]

145. Bajpai S., Chaudhuri M. Removal of arsenic from ground water by manganese dioxide-coated sand. Journal of Environmental Engineering. 1999;125(8):782–784. doi:10.1061/(ASCE)0733-9372(1999)125:8(782). [CrossRef] [Google Scholar]

146. Criscuoli A., Majumdar S., Figoli A., Sahoo G. C., Bafaro P., Bandyopadhyay S., Drioli E. As(III) oxidation by MnO2 coated PEEK-WC nanostructured capsules. Journal of Hazardous Materials. 2012;211-212:281–287. doi:10.1016/j.jhazmat.2011.11.023. [PubMed] [CrossRef] [Google Scholar]

147. Yoon S.-H., Lee J. H. Oxidation mechanism of As (III) in the UV/TiO 2 system: evidence for a direct whole oxidation mechanism. Environmental Science and Technology. 2005;39(24):9695–9701. doi:10.1021/es051148r. [PubMed] [CrossRef] [Google Scholar]

148. Sharma V. K., Dutta P. K., Ray A. K. Review of kinetics of chemical and photocatalytical oxidation of Arsenic(III) as influenced by pH. Journal of Environmental Science and Health. 2007;42(7):997–1004. doi:10.1080/10934520701373034. [PubMed] [CrossRef] [Google Scholar]

149. Dutta P. K., Ray A. K., Sharma V. K., Millero F. J. Adsorption of arsenate and arsenite on titanium dioxide suspensions. Journal of Colloid and Interface Science. 2004;278(2):270–275. doi:10.1016/j.jcis.2004.06.015. [PubMed] [CrossRef] [Google Scholar]

150. Miller S. M., Spaulding M. L., Zimmerman J. B. Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research. 2011;45(17):5745–5754. doi:10.1016/j.watres.2011.08.040. [PubMed] [CrossRef] [Google Scholar]

151. Miller S. M., Zimmerman J. B. Novel, bio-based, photoactive arsenic sorbent: TiO2-impregnated chitosan bead. Water Research. 2010;44(19):5722–5729. doi:10.1016/j.watres.2010.05.045. [PubMed] [CrossRef] [Google Scholar]

152. Yamani J. S., Miller S. M., Spaulding M. L., Zimmerman J. B. Enhanced arsenic removal using mixed metal oxide impregnated chitosan beads. Water Research. 2012;46(14):4427–4434. doi:10.1016/j.watres.2012.06.004. [PubMed] [CrossRef] [Google Scholar]

153. Pena M. E., Korfiatis G. P., Patel M., Lippincott L., Meng X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research. 2005;39(11):2327–2337. doi:10.1016/j.watres.2005.04.006. [PubMed] [CrossRef] [Google Scholar]

154. Bang S., Patel M., Lippincott L., Meng X. Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere. 2005;60(3):389–397. doi:10.1016/j.chemosphere.2004.12.008. [PubMed] [CrossRef] [Google Scholar]

155. Ferguson M. A., Hering J. G. TiO2-photocatalyzed As(III) oxidation in a fixed-bed, flow-through reactor. Environmental Science and Technology. 2006;40(13):4261–4267. doi:10.1021/es0524853. [PubMed] [CrossRef] [Google Scholar]

156. Guan X., Du J., Meng X., Sun Y., Sun B., Hu Q. Corrigendum to “Application of titanium dioxide in arsenic removal from water: a review” Journal of Hazardous Materials. 2012;221-222:303. doi:10.1016/j.jhazmat.2012.04.023. [PubMed] [CrossRef] [Google Scholar]

157. Choong T. S. Y., Chuah T. G., Robiah Y., Gregory Koay F. L., Azni I. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination. 2007;217(1–3):139–166. doi:10.1016/j.desal.2007.01.015. [CrossRef] [Google Scholar]

158. McNeill L. S., Edwards M. Soluble arsenic removal at water treatment plants. Journal of American Water Works Association. 1995;87(4):105–113. [Google Scholar]

159. Pallier V., Feuillade-Cathalifaud G., Serpaud B., Bollinger J.-C. Effect of organic matter on arsenic removal during coagulation/flocculation treatment. Journal of Colloid and Interface Science. 2010;342(1):26–32. doi:10.1016/j.jcis.2009.09.068. [PubMed] [CrossRef] [Google Scholar]

160. Hu C., Liu H., Chen G., Qu J. Effect of aluminum speciation on arsenic removal during coagulation process. Separation and Purification Technology. 2012;86:35–40. doi:10.1016/j.seppur.2011.10.017. [CrossRef] [Google Scholar]

161. Bilici Baskan M., Pala A. A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination. 2010;254(1–3):42–48. doi:10.1016/j.desal.2009.12.016. [CrossRef] [Google Scholar]

162. Song S., Lopez-Valdivieso A., Hernandez-Campos D. J., Peng C., Monroy-Fernandez M. G., Razo-Soto I. Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Research. 2006;40(2):364–372. doi:10.1016/j.watres.2005.09.046. [PubMed] [CrossRef] [Google Scholar]

163. Andrianisa H. A., Ito A., Sasaki A., Aizawa J., Umita T. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride. Water Research. 2008;42(19):4809–4817. doi:10.1016/j.watres.2008.08.027. [PubMed] [CrossRef] [Google Scholar]

164. Lakshmanan D., Clifford D. A., Samanta G. Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Research. 2010;44(19):5641–5652. doi:10.1016/j.watres.2010.06.018. [PubMed] [CrossRef] [Google Scholar]

165. Lacasa E., Cañizares P., Sáez C., Fernández F. J., Rodrigo M. A. Removal of arsenic by iron and aluminium electrochemically assisted coagulation. Separation and Purification Technology. 2011;79(1):15–19. doi:10.1016/j.seppur.2011.03.005. [CrossRef] [Google Scholar]

166. Mohan D., Pittman C. U., Jr. Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials. 2007;142(1-2):1–53. doi:10.1016/j.jhazmat.2007.01.006. [PubMed] [CrossRef] [Google Scholar]

167. Wilkie J. A., Hering J. G. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1996;107:97–110. doi:10.1016/0927-7757(95)03368-8. [CrossRef] [Google Scholar]

168. Raven K. P., Jain A., Loeppert R. H. Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environmental Science and Technology. 1998;32(3):344–349. doi:10.1021/es970421p. [CrossRef] [Google Scholar]

169. Grafe M., Eick M. J., Grossl P. R. Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Science Society of America Journal. 2001;65(6):1680–1687. doi:10.2136/sssaj2001.1680. [CrossRef] [Google Scholar]

170. Zhu J., Pigna M., Cozzolino V., Caporale A. G., Violante A. Higher sorption of arsenate versus arsenite on amorphous Al-oxide, effect of ligands. Environmental Chemistry Letters. 2013;11(3):289–294. doi:10.1007/s10311-013-0405-7. [CrossRef] [Google Scholar]

171. Kanematsu M., Young T. M., f*ckushi K., Green P. G., Darby J. L. Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochimica et Cosmochimica Acta. 2013;106:404–428. doi:10.1016/j.gca.2012.09.055. [CrossRef] [Google Scholar]

172. Lin T.-F., Wu J.-K. Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Research. 2001;35(8):2049–2057. doi:10.1016/S0043-1354(00)00467-X. [PubMed] [CrossRef] [Google Scholar]

173. Singh T. S., Pant K. K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Separation and Purification Technology. 2004;36(2):139–147. doi:10.1016/S1383-5866(03)00209-0. [CrossRef] [Google Scholar]

174. Giles D. E., Mohapatra M., Issa T. B., Anand S., Singh P. Iron and aluminium based adsorption strategies for removing arsenic from water. Journal of Environmental Management. 2011;92(12):3011–3022. doi:10.1016/j.jenvman.2011.07.018. [PubMed] [CrossRef] [Google Scholar]

175. Kuriakose S., Singh T. S., Pant K. K. Adsorption of As(III) from aqueous solution onto iron oxide impregnated activated alumina. Water Quality Research Journal of Canada. 2004;39(3):258–266. [Google Scholar]

176. Tripathy S. S., Raichur A. M. Enhanced adsorption capacity of activated alumina by impregnation with alum for removal of As(V) from water. Chemical Engineering Journal. 2008;138(1–3):179–186. doi:10.1016/j.cej.2007.06.028. [CrossRef] [Google Scholar]

177. Kunzru S., Chaudhuri M. Manganese amended activated alumina for adsorption/oxidation of arsenic. Journal of Environmental Engineering. 2005;131(9):1350–1353. doi:10.1061/(ASCE)0733-9372(2005)131:9(1350). [CrossRef] [Google Scholar]

178. Bamwsp, Dfid, Wab Rapid Assessment of Household Level Arsenic Removal Technologies. Phase II Report. Dhaka, 2001.

179. Sarkar S., Greenleaf J. E., Gupta A., Ghosh D., Blaney L. M., Bandyopadhyay P., Biswas R. K., Dutta A. K., SenGupta A. K. Evolution of community-based arsenic removal systems in remote villages in West Bengal, India: assessment of decade-long operation. Water Research. 2010;44(19):5813–5822. doi:10.1016/j.watres.2010.07.072. [PubMed] [CrossRef] [Google Scholar]

180. Jekel M., Seith R. Comparison of conventional and new techniques for the removal of arsenic in a full scale water treatment plant. Water Supply. 2000;18(1-2):628–631. [Google Scholar]

181. Driehaus W., Jekel M., Hildebrandt U. Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. Journal of Water Supply: Research and Technology. 1998;47(1):30–35. [Google Scholar]

182. Thirunavukkarasu O. S., Viraraghavan T., Subramanian K. S. Arsenic removal from drinking water using granular ferric hydroxide. Water SA. 2003;29(2):161–170. [Google Scholar]

183. Badruzzaman M., Westerhoff P., Knappe D. R. U. Intraparticle diffusion and adsorption of arsenate onto granular ferric hydroxide (GFH) Water Research. 2004;38(18):4002–4012. doi:10.1016/j.watres.2004.07.007. [PubMed] [CrossRef] [Google Scholar]

184. Guan X.-H., Wang J., Chusuei C. C. Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. Journal of Hazardous Materials. 2008;156(1-3):178–185. doi:10.1016/j.jhazmat.2007.12.012. [PubMed] [CrossRef] [Google Scholar]

185. AIIH . Arsenic mitigation programme for technology and park on arsenic removal devices. In: Basu B. B., editor. Convenor Director. Kolkata, India: School of Fundamental Research; 2001. [Google Scholar]

186. Katsoyiannis I. A., Ruettimann T., Hug S. J. pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environmental Science and Technology. 2008;42(19):7424–7430. doi:10.1021/es800649p. [PubMed] [CrossRef] [Google Scholar]

187. Klas S., Kirk D. W. Advantages of low pH and limited oxygenation in arsenite removal from water by zero-valent iron. Journal of Hazardous Materials. 2013;252-253:77–82. doi:10.1016/j.jhazmat.2013.02.044. [PubMed] [CrossRef] [Google Scholar]

188. Khan A. H., Rasul S. B., Munir A. K. M., Habibuddowla M., Alauddin M., Newaz S. S., Hussam A. Appraisal of a simple arsenic removal method for groundwater of Bangladesh. Journal of Environmental Science and Health A: Toxic/Hazardous Substances and Environmental Engineering. 2000;35(7):1021–1041. [Google Scholar]

189. Alauddin M., Hussam A., Khan A. H., Habibuddowla M., Rasul S. B., Munir A. K. M. Critical evaluation of a simple arsenic removal method for groundwater of Bangladesh. Arsenic Exposure and Health Effects IV. 4th International Conference on Arsenic Exposure and Health Effects; June 2001; San Diego, Calif, USA. pp. 441–451. [Google Scholar]

190. Hussam A., Munir A. K. M. A simple and effective arsenic filter based on composite iron matrix: development and deployment studies for groundwater of Bangladesh. Journal of Environmental Science and Health A Toxic/Hazardous Substances and Environmental Engineering. 2007;42(12):1869–1878. doi:10.1080/10934520701567122. [PubMed] [CrossRef] [Google Scholar]

191. Chiew H., Sampson M. L., Huch S., Ken S., Bostick B. C. Effect of groundwater iron and phosphate on the efficacy of arsenic removal by iron-amended bios and filters. Environmental Science and Technology. 2009;43(16):6295–6300. doi:10.1021/es803444t. [PubMed] [CrossRef] [Google Scholar]

192. Neumann A., Kaegi R., Voegelin A., Hussam A., Munir A. K. M., Hug S. J. Arsenic removal with composite iron matrix filters in Bangladesh: a field and laboratory study. Environmental Science and Technology. 2013;47(9):4544–4554. doi:10.1021/es305176x. [PubMed] [CrossRef] [Google Scholar]

193. Noubactep C. Metallic iron for water treatment: a critical review. Clean-Soil, Air, Water. 2013;41(7):702–710. doi:10.1002/clen.201200502. [CrossRef] [Google Scholar]

194. Tresintsi S., Simeonidis K., Vourlias G., Stavropoulos G., Mitrakas M. Kilogram-scale synthesis of iron oxy-hydroxides with improved arsenic removal capacity: study of Fe(II) oxidation-precipitation parameters. Water Research. 2012;46(16):5255–5267. doi:10.1016/j.watres.2012.06.049. [PubMed] [CrossRef] [Google Scholar]

195. Zhang T., Sun D. D. Removal of arsenic from water using multifunctional micro-/nano-structured MnO2 spheres and microfiltration. Chemical Engineering Journal. 2013;225:271–279. doi:10.1016/j.cej.2013.04.001. [CrossRef] [Google Scholar]

196. Cui H., Su Y., Li Q., Gao S., Shang J. K. Exceptional arsenic (III,V) removal performance of highly porous, nanostructured ZrO2 spheres for fixed bed reactors and the full-scale system modeling. Water Research. 2013 doi:10.1016/j.watres.2013.07.040. [PubMed] [CrossRef] [Google Scholar]

197. Cui M., Jang M., Ibrahim S., Park B., Cho E., Khim J. Arsenite removal using a pilot system of ultrasound and ultraviolet followed by microfiltration. Ultrasonics Sonochemistry. 2014;21:1527–1534. [PubMed] [Google Scholar]

198. Silver S., Phung L. T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Applied and Environmental Microbiology. 2005;71(2):599–608. doi:10.1128/AEM.71.2.599-608.2005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

199. Laverman A. M., Blum J. S., Schaefer J. K., Phillips E. J. P., Lovley D. R., Oremland R. S. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied and Environmental Microbiology. 1995;61(10):3556–3561. [PMC free article] [PubMed] [Google Scholar]

200. Macy J. M., Santini J. M., Pauling B. V., O'Neill A. H., Sly L. I. Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Archives of Microbiology. 2000;173(1):49–57. doi:10.1007/s002030050007. [PubMed] [CrossRef] [Google Scholar]

201. Oremland R. S., Stolz J. F. Arsenic, microbes and contaminated aquifers. Trends in Microbiology. 2005;13(2):45–49. doi:10.1016/j.tim.2004.12.002. [PubMed] [CrossRef] [Google Scholar]

202. Oremland R. S., Saltikov C. W., Wolfe-Simon F., Stolz J. F. Arsenic in the evolution of earth and extraterrestrial ecosystems. Geomicrobiology Journal. 2009;26(7):522–536. doi:10.1080/01490450903102525. [CrossRef] [Google Scholar]

203. Jekel M. R. Removal of arsenic in drinking water treatment. In: Nriagu J. O., editor. Arsenic in the Environment. Part 1: Cycling and Characterization. New York, NY, USA: Wiley; 1994. pp. 119–130. [Google Scholar]

204. Molnar L ., Vircikova E., Lech P. Experimental study of AsIII oxidation by hydrogen peroxide. Hydrometallurgy. 1994;35:1–7. doi:10.1016/0304-386X(94)90013-2. [CrossRef] [Google Scholar]

205. Kim M.-J., Nriagu J. Oxidation of arsenite in groundwater using ozone and oxygen. Science of the Total Environment. 2000;247(1):71–79. doi:10.1016/S0048-9697(99)00470-2. [PubMed] [CrossRef] [Google Scholar]

206. Gallard H., Von Gunten U. Chlorination of natural organic matter: kinetics of chlorination and of THM formation. Water Research. 2002;36(1):65–74. doi:10.1016/S0043-1354(01)00187-7. [PubMed] [CrossRef] [Google Scholar]

207. Katsoyiannis I. A., Zouboulis A. I., Jekel M. Kinetics of bacterial As(III) oxidation and subsequent As(V) removal by sorption onto biogenic manganese oxides during groundwater treatment. Industrial and Engineering Chemistry Research. 2004;43(2):486–493. doi:10.1021/ie030525a. [CrossRef] [Google Scholar]

208. Battaglia-Brunet F., Dictor M.-C., Garrido F., Crouzet C., Morin D., Dekeyser K., Clarens M., Baranger P. An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. Journal of Applied Microbiology. 2002;93(4):656–667. doi:10.1046/j.1365-2672.2002.01726.x. [PubMed] [CrossRef] [Google Scholar]

209. Santini J. M., Sly L. I., Schnagl R. D., Macy J. M. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: phylogenetic, physiological, and preliminary biochemical studies. Applied and Environmental Microbiology. 2000;66(1):92–97. doi:10.1128/AEM.66.1.92-97.2000. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

210. Kartinen E. O., Jr., Martin C. J. An overview of arsenic removal processes. Desalination. 1995;103(1-2):79–88. doi:10.1016/0011-9164(95)00089-5. [CrossRef] [Google Scholar]

211. Zouboulis A. I., Katsoyiannis I. A. Arsenic removal using iron oxide loaded alginate beads. Industrial & Engineering Chemistry Research. 2002;41(24):6149–6155. [Google Scholar]

212. Katsoyiannis I., Zouboulis A., Althoff H., Bartel H. As(III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere. 2002;47(3):325–332. doi:10.1016/S0045-6535(01)00306-X. [PubMed] [CrossRef] [Google Scholar]

213. Katsoyiannis I. A., Zouboulis A. I. Application of biological processes for the removal of arsenic from groundwaters. Water Research. 2004;38(1):17–26. doi:10.1016/j.watres.2003.09.011. [PubMed] [CrossRef] [Google Scholar]

214. Katsoyiannis I. A., Zikoudi A., Hug S. J. Arsenic removal from groundwaters containing iron, ammonium, manganese and phosphate: a case study from a treatment unit in Northern Greece. Desalination. 2008;224(1–3):330–339. doi:10.1016/j.desal.2007.06.014. [CrossRef] [Google Scholar]

215. Katsoyiannis I. A., Zouboulis A. I., Mitrakas M., Althoff H. W., Bartel H. A hybrid system incorporating a pipe reactor and microfiltration for biological iron, manganese and arsenic removal from anaerobic groundwater. Fresenius Environmental Bulletin. 2013;22:3848–2853. [Google Scholar]

216. Nordstrom D. K. Worldwide occurrences of arsenic in ground water. Science. 2002;296(5576):2143–2145. doi:10.1126/science.1072375. [PubMed] [CrossRef] [Google Scholar]

217. Gunduz O., Simsek C., Hasozbek A. Arsenic pollution in the groundwater of Simav Plain, Turkey: its impact on water quality and human health. Water, Air, & Soil Pollution. 2010;205(1–4):43–62. doi:10.1007/s11270-009-0055-3. [CrossRef] [Google Scholar]

218. Bundschuh J., Litter M. I., Parvez F., Román-Ross G., Nicolli H. B., Jean J.-S., Liu C.-W., López D., Armienta M. A., Guilherme L. R. G., Cuevas A. G., Cornejo L., Cumbal L., Toujaguez R. One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Science of the Total Environment. 2012;429:2–35. doi:10.1016/j.scitotenv.2011.06.024. [PubMed] [CrossRef] [Google Scholar]

219. Rahman M. M., Naidu R., Bhattacharya P. Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health. 2009;31(1):9–21. doi:10.1007/s10653-008-9233-2. [PubMed] [CrossRef] [Google Scholar]

220. Das S., Jean J.-S., Kar S. Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicology and Environmental Safety. 2013;92:252–257. doi:10.1016/j.ecoenv.2013.02.016. [PubMed] [CrossRef] [Google Scholar]

221. Srivastava S., Sharma Y. K. Arsenic occurrence and accumulation in soil and water of eastern districts of Uttar Pradesh, India. Environmental Monitoring and Assessment. 2013;185(6):4995–5002. doi:10.1007/s10661-012-2920-6. [PubMed] [CrossRef] [Google Scholar]

222. Rahman M. M., Naidu R., Bhattacharya P. Arsenic contamination in groundwater in the Southeast Asia region. Environmental Geochemistry and Health. 2009;31, supplement 1:9–21. [PubMed] [Google Scholar]

223. Twarakavi N. K. C., Kaluarachchi J. J. Arsenic in the shallow ground waters of conterminous United States: assessment, health risks, and costs for MCL compliance. Journal of the American Water Resources Association. 2006;42(2):275–294. doi:10.1111/j.1752-1688.2006.tb03838.x. [CrossRef] [Google Scholar]

224. Lena Q. M., Hong-Jie S., Bala R., Bing W., Jun L., Li-Ping P. Arsenic and selenium toxicity and their interactive effects in humans. Environment International. 2014;69:148–158. [PubMed] [Google Scholar]

Arsenic Contamination of Groundwater: A Review of Sources, Prevalence, Health Risks, and Strategies for Mitigation (2024)
Top Articles
Latest Posts
Article information

Author: Patricia Veum II

Last Updated:

Views: 5876

Rating: 4.3 / 5 (44 voted)

Reviews: 83% of readers found this page helpful

Author information

Name: Patricia Veum II

Birthday: 1994-12-16

Address: 2064 Little Summit, Goldieton, MS 97651-0862

Phone: +6873952696715

Job: Principal Officer

Hobby: Rafting, Cabaret, Candle making, Jigsaw puzzles, Inline skating, Magic, Graffiti

Introduction: My name is Patricia Veum II, I am a vast, combative, smiling, famous, inexpensive, zealous, sparkling person who loves writing and wants to share my knowledge and understanding with you.