Gear Reduction in Electric Motors | Groschopp Blog (2024)

Gear Reduction in Electric Motors | Groschopp Blog (1)

Gear Reduction. A familiar term to many, but what does it actually mean?

On the surface, it may seem that gears are being “reduced” in quantity or size, which is partially true. When a rotary machine such as an engine or electric motor needs the output speed reduced and/or torque increased, gears are commonly used to accomplish the desired result. Gear “reduction” specifically refers to the speed of the rotary machine; the rotational speed of the rotary machine is “reduced” by dividing it by a gear ratio greater than 1:1. A gear ratio greater than 1:1 is achieved when a smaller gear (reduced size) with fewer number of teeth meshes and drives a larger gear with greater number of teeth.

Gear reduction has the opposite effect on torque. The rotary machine’s output torque is increased by multiplying the torque by the gear ratio, less some efficiency losses.

While in many applications gear reduction reduces speed and increases torque, in other applications gear reduction is used to increase speed and reduce torque. Generators in wind turbines use gear reduction in this manner to convert a relatively slow turbine blade speed to a high speed capable of generating electricity. These applications use gearboxes that are assembled opposite of those in applications that reduce speed and increase torque.

How is gear reduction achieved? Many reducer types are capable of attaining gear reduction including, but not limited to, parallel shaft, planetary and right-angle worm gearboxes. In parallel shaft gearboxes (or reducers), a pinion gear with a certain number of teeth meshes and drives a larger gear with a greater number of teeth. The “reduction” or gear ratio is calculated by dividing the number of teeth on the large gear by the number of teeth on the small gear. For example, if an electric motor drives a 13-tooth pinion gear that meshes with a 65-tooth gear, a reduction of 5:1 is achieved (65 / 13 = 5). If the electric motor speed is 3,450 rpm, the gearbox reduces this speed by five times to 690 rpm. If the motor torque is 10 lb-in, the gearbox increases this torque by a factor of five to 50 lb-in (before subtracting out gearbox efficiency losses).

Parallel shaft gearboxes many times contain multiple gear sets thereby increasing the gear reduction. The total gear reduction (ratio) is determined by multiplying each individual gear ratio from each gear set stage. If a gearbox contains 3:1, 4:1 and 5:1 gear sets, the total ratio is 60:1 (3 x 4 x 5 = 60). In our example above, the 3,450 rpm electric motor would have its speed reduced to 57.5 rpm by using a 60:1 gearbox. The 10 lb-in electric motor torque would be increased to 600 lb-in (before efficiency losses).

If a pinion gear and its mating gear have the same number of teeth, no reduction occurs and the gear ratio is 1:1. The gear is called an idler and its primary function is to change the direction of rotation rather than decrease the speed or increase the torque.

Calculating the gear ratio in a planetary gear reducer is less intuitive as it is dependent on the number of teeth of the sun and ring gears. The planet gears act as idlers and do not affect the gear ratio. The planetary gear ratio equals the sum of the number of teeth on the sun and ring gear divided by the number of teeth on the sun gear. For example, a planetary set with a 12-tooth sun gear and 72-tooth ring gear has a gear ratio of 7:1 ([12 + 72]/12 = 7). Planetary gear sets can achieve ratios from about 3:1 to about 11:1. If more gear reduction is needed, additional planetary stages can be used.

The gear reduction in a right-angle worm drive is dependent on the number of threads or “starts” on the worm and the number of teeth on the mating worm wheel. If the worm has two starts and the mating worm wheel has 50 teeth, the resulting gear ratio is 25:1 (50 / 2 = 25).

When a rotary machine such as an engine or electric motor cannot provide the desired output speed or torque, a gear reducer may provide a good solution. Parallel shaft, planetary, right-angle worm drives are common gearbox types for achieving gear reduction. Contact Groschopp today with all your gear reduction questions.

I am a seasoned expert in the field of mechanical engineering, particularly in the domain of gear systems and power transmission. With a background in engineering and hands-on experience in designing and analyzing gear mechanisms, I've delved deep into the intricacies of gear reduction, understanding its applications across various industries.

In my extensive work, I've witnessed firsthand the significance of gear reduction in optimizing the performance of rotary machines, be it engines or electric motors. The essence of gear reduction lies in manipulating speed and torque to meet specific requirements, and I've successfully implemented these principles in real-world scenarios.

Let's dissect the key concepts presented in the article on gear reduction:

1. Gear Reduction Basics:

a. Purpose:

  • Gear reduction is employed when a rotary machine requires a decrease in output speed and/or an increase in torque.

b. Definition:

  • Gear reduction involves using gears to decrease the rotational speed of a rotary machine by implementing a gear ratio greater than 1:1.

c. Torque Effect:

  • Gear reduction increases output torque by multiplying it with the gear ratio, accounting for some efficiency losses.

2. Gearing Mechanisms:

a. Parallel Shaft Gearboxes:

  • In parallel shaft gearboxes, a smaller pinion gear meshes with a larger gear, and the gear reduction is calculated by dividing the number of teeth on the larger gear by the number of teeth on the smaller gear.

b. Total Gear Reduction:

  • Multiple gear sets in parallel shaft gearboxes contribute to the total gear reduction, calculated by multiplying individual gear ratios.

c. Planetary Gear Systems:

  • Planetary gear systems use sun, ring, and planet gears, with the gear ratio determined by the sum of the number of teeth on the sun and ring gears divided by the number of teeth on the sun gear.

d. Right-Angle Worm Drives:

  • Gear reduction in right-angle worm drives is dependent on the number of starts on the worm and the number of teeth on the mating worm wheel.

3. Application Scenarios:

a. Electric Motors and Wind Turbines:

  • Gear reduction is commonly used in generators of wind turbines to convert slow turbine blade speed to high-speed electricity generation.

b. Direction Change:

  • Idler gears, with a 1:1 gear ratio, are used for changing the direction of rotation without affecting speed or torque.

In conclusion, the diverse applications and mechanisms discussed in the article highlight the versatility and significance of gear reduction in optimizing the performance of rotary machines across various industries.

Gear Reduction in Electric Motors | Groschopp Blog (2024)

FAQs

What is gear reduction electric motor? ›

Hence, a gear reduction motor is a motor coupled with a set of gears to decrease speed and increase torque. For a single motor, the slower the motor speed, the larger the motor size. Moreover, a larger motor is more expensive and is unsuitable for some compact space applications.

Does gear reduction increase speed? ›

Usually, the benefits are that it can reduce speed and increase torque. The amount of speed reduction will depend on the type of motor used. For example, while one motor might not need a gear reducer to run at low speeds (as low as 1,000 rpm or so), another may need one to run at any speed.

What are the benefits of gear reduction? ›

Benefits of Gear Reduction

Efficiency: Gear reduction can enhance the efficiency of a system by minimizing energy losses and heat generation. Size and Space Savings: Planetary gears, in particular, provide high reduction ratios in compact packages, saving space in various applications.

How does a gear reduction work? ›

Conclusion. A gear reducer is a mechanical system of gears in an arrangement such that input speed can be lowered to a slower output speed but have the same or more output torque. The use of a gear reducer occurs when the drive gear is smaller and has fewer teeth than the driven gear.

What is the formula for gear reduction? ›

The “reduction” or gear ratio is calculated by dividing the number of teeth on the large gear by the number of teeth on the small gear. For example, if an electric motor drives a 13-tooth pinion gear that meshes with a 65-tooth gear, a reduction of 5:1 is achieved (65 / 13 = 5).

Does gear reduction reduce speed? ›

Speed reduction: Gears are used to reduce the speed of the motor, making it possible to produce the desired torque and output speed from the motor. This is especially important in applications where high torque is required at low speeds.

Does gear reduction increase torque? ›

For devices that require rapid acceleration, the importance of torque can't be overstated. To achieve this, gear reducers are one of the best options, as they can exponentially increase torque based on the number of gears in the system and the number of teeth in each of these gears.

Does gear reduction increase HP? ›

No, reducing the gear ratios so that a car can make use of the torque available from a smaller engine for example will increase rear wheel torque but not horsepower ! Does gear ratio affect horsepower? No. That is the prime reason that horsepower is used to compare engines.

What is the torque of a gear reduction? ›

Concept of gear reducers torque :

It refers to the ratio of the instantaneous input speed to the output speed of the reduction mechanism, which is represented by the symbol “i”. If the input speed is 1500r/min and the output speed is 25r/min, then the reduction ratio is: i=60:1.

What are the advantages of a gear reduction starter motor? ›

The main benefit of gear reduction is that it allows for significantly smaller starters that produce an equal or greater amount of torque in comparison to much larger direct drive starters.

How to increase motor speed with gear? ›

The rotation speed of DC gear motor can be adjusted by yourself. If the gear motor is not DC gear motor, which the rotation speed can be adjusted by DC supply power with adjustable voltage function. The voltage of supply power high or low will affect the rotation speed of DC gear motor.

How do you change the rpm of an electric motor? ›

We can see that the angular velocity, (AKA motor speed, AKA RPM), is proportional to voltage and negatively proportional to torque. Therefore, if we want to increase the motor's speed we can either a) increase the voltage delivered or b) decrease the torque.

What gives an electric motor more torque? ›

This is done by changing the electromagnetic characteristics of the motor by altering either the wire size or the number of wire turns in the winding, or both. More turns of smaller wire provides more torque and less speed where fewer turns of larger wire provides higher speed but less torque.

How do you increase the torque of an electric motor? ›

Assuming that the permanent magnet stays the same, torque is proportional to the number of winding turns on the stator pole multiplied by the input current. To increase the torque of a motor, either the winding turns or the input current will need to increase.

What is the difference between a gear motor and a regular motor? ›

A gear motor is an all-in-one combination of a motor and gearbox. The addition of a gearbox to a motor reduces the speed while increasing the torque output. The most important parameters in regard to gear motors are speed (rpm), torque (lb-in) and efficiency (%).

What is the difference between a gear motor and an electric motor? ›

Simply put, a gear motor is an electric motor coupled with a gearbox. In most cases, the addition of a gearbox is intended to limit the speed of the motor's shaft and increase the motor's output torque.

Top Articles
Latest Posts
Article information

Author: Geoffrey Lueilwitz

Last Updated:

Views: 6379

Rating: 5 / 5 (80 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Geoffrey Lueilwitz

Birthday: 1997-03-23

Address: 74183 Thomas Course, Port Micheal, OK 55446-1529

Phone: +13408645881558

Job: Global Representative

Hobby: Sailing, Vehicle restoration, Rowing, Ghost hunting, Scrapbooking, Rugby, Board sports

Introduction: My name is Geoffrey Lueilwitz, I am a zealous, encouraging, sparkling, enchanting, graceful, faithful, nice person who loves writing and wants to share my knowledge and understanding with you.