The Physics of The Figure Skater's Spin (2024)

How do figure skaters manage to spin so elegantly? The answer lies in a simple physical principle

We’re all familiar with the magic of the Olympic games. Once every four years the entire family sits down together to watch a selection of sports that many of us are not routinely exposed to. As a child I was in awe of the spectacular abilities of the athletes, and especially the figure skaters at the Winter Olympics. I just couldn’t understand how they could change the pace of their spin so quickly and elegantly. Today I know: it’s all about angular momentum conservation.

Angular momentum is a conserved physical quantity, similar to the way that energy is a conserved quantity. Roughly, it is a measure of the rotational momentum of a rotating object or body. The Law of Conservation of Angular Momentum is what allows the figure skater to control the pace of her spin, just as it prevents us from falling every time we ride a bicycle.

In order to understand angular momentum, let’s take a point around which an object rotates and calculate the radius, or the distance of the object from that middle point, and the angular velocity of the object, which is based on the number of revolutions per second. A “regular” or linear momentum, which describes motion along a straight line, is the product of the mass times the velocity of an object, characterizing the magnitude of the motion. If a car and a truck are traveling at the same speed, the truck has a larger momentum since its mass is much larger. This is also why much more energy is required in order to stop it. The angular momentum is a product of the mass times the angular velocity times the squared radius, implying that the energy of an object rotating further from the central point is larger than that of an identical object rotating at the same velocity in a smaller circle.

Another physical quantity istorque,also referred to as the rotational force, which, in its most basic form, is the product of the force times the length of the axis exerting that force. If a swing is hanging on long chains, we will need to apply more force to swing a child to a certain height, than we would on a swing hanging on shorter chains. The moment of inertia of an object describes the ratio between the rotational force and the angular acceleration of an object along a certain rotational axis. The angular momentum is equal to the moment of inertia times the angular velocity. An object with a higher moment of inertia will spin slower than would the same object with a lower moment of inertia, when a similar force is applied.

Spinning While Skating

Let’s get back to the spinning figure skater. Given that no outside force is applied, the angular momentum is conserved. When the skater extends her arms or legs, she effectively increases her radius, and thus changes her moment of inertia. Since the angular momentum remains constant, what changes is the angular velocity of the spin. For example, when the skater extends her arms outwards, increasing twofold the moment of inertia, the velocity of her spin also decreases twofold. While tucking her arms in, she decreases the moment of inertia significantly and thus gains high rotational velocity. One doesn’t have to be a skilled dancer to experience this phenomenon – you can try it out (carefully!) on a swivel chair or a rotating stool, in the following way.

Now that we understand the meaning of the conservation of angular momentum, we can enjoy watching figure skating competitions even more.

I am a physicist with a deep understanding of the principles governing the elegant spins of figure skaters, particularly their mastery of angular momentum conservation. My expertise in physics allows me to elucidate the intricate details behind the seemingly magical ability of figure skaters to control the pace of their spins with such grace and precision.

Angular momentum, a fundamental physical quantity akin to the conservation of energy, plays a pivotal role in deciphering the secrets of figure skaters' spins. In the context of rotational motion, angular momentum measures the rotational momentum of an object or body. The Law of Conservation of Angular Momentum is the key principle at play here, similar to how the conservation of energy prevents us from toppling over when riding a bicycle.

To comprehend angular momentum, let's delve into the specifics. Consider a point around which an object rotates, and factor in the radius (distance from the center point) and the angular velocity (revolutions per second). Unlike linear momentum, which pertains to motion along a straight line, angular momentum is the product of mass, angular velocity, and the squared radius. This implies that an object rotating at a greater distance from the center point possesses more energy than an identical object rotating in a smaller circle at the same velocity.

The article introduces another crucial concept: torque, also known as rotational force. Torque is the product of force and the length of the axis exerting that force. The moment of inertia, which represents the ratio between rotational force and angular acceleration along a specific rotational axis, comes into play. The angular momentum is equal to the moment of inertia multiplied by the angular velocity. A higher moment of inertia results in a slower spin when a force is applied, while a lower moment of inertia leads to a higher rotational velocity.

Now, let's apply these principles to figure skaters. With no external force acting on them, the conservation of angular momentum prevails. When a skater extends her arms or legs, she effectively increases her radius, altering her moment of inertia. As angular momentum remains constant, the change in radius affects the angular velocity of the spin. For instance, extending arms outward doubles the moment of inertia, leading to a twofold decrease in spin velocity. Conversely, tucking arms in reduces moment of inertia, resulting in a higher rotational velocity.

In essence, the mastery of angular momentum conservation allows figure skaters to manipulate their spins with remarkable finesse, captivating audiences with their graceful performances. Understanding these principles adds a layer of appreciation when watching figure skating competitions, transforming the viewing experience into a celebration of physics in motion.

The Physics of The Figure Skater's Spin (2024)

FAQs

The Physics of The Figure Skater's Spin? ›

The conservation of angular momentum explains why ice skaters start to spin faster when they suddenly draw their arms inward, or why divers or gymnasts who decrease their moment of inertia by going into the tuck position start to flip or twist at a faster rate.

What is the physics behind figure skating spins? ›

Given that no outside force is applied, the angular momentum is conserved. When the skater extends her arms or legs, she effectively increases her radius, and thus changes her moment of inertia. Since the angular momentum remains constant, what changes is the angular velocity of the spin.

What is the physics of ice skating? ›

Ice skating works because metal skate blades glide with very little friction over a thin layer of water on the ice surface. At one time, scientists thought skaters created the water layer by melting the surface layers of ice through the pressure of their body weight.

What is the physics equation for figure skating? ›

a) The magnitude of figure skater's relative velocity is v=m1+m2m1m2FΔt=2ms−1. b) The work done by both of partners during push-off is W=m1+m22m1m2F2(Δt)2=60J.

Why do figure skaters not get dizzy when they spin? ›

Why don't skaters feel dizzy even after doing many spins on themselves? Skaters are trained to develop a high level of spatial awareness and balance, which helps them to mitigate the effects of dizziness or vertigo when performing spins on the ice.

How does a figure skater spin so fast? ›

The conservation of angular momentum explains why ice skaters start to spin faster when they suddenly draw their arms inward, or why divers or gymnasts who decrease their moment of inertia by going into the tuck position start to flip or twist at a faster rate.

Why do figure skaters pull their arms in to spin faster? ›

With angular momentum constant, angular velocity must increase as moment of inertia decreases. If she extends her arms again, her moment of inertia will increase and the speed of her spin will decrease again.

What law of motion is figure skating? ›

The skater applies a force to the ice using their skates, and this force propels them forward. This is an example of Newton's third law of motion: for every action, there is an equal and opposite reaction. The friction between the skates and the ice is also a force that affects the motion of the skater.

What is the moment of inertia of an ice skater spinning? ›

A spinning ice skater with their arms and leg stretched out has a total moment of inertia about their axis of rotation of 3.0kgm2 . As they pull their arms and leg in, their angular speed increases from 1.5revs−1 to 3.5revs−1 .

How many G's do figure skaters experience when spinning? ›

While participating in this study, our skater had the greatest forces produced during her layback spin with -2.2G recorded during the entry into the spin and 1.8G recorded during the exit.

How do ballerinas not get dizzy? ›

Many experienced dancers have adapted their brains to reduce the physical signs that cause dizziness. However, most dancers learn a technique known as spotting. When a dancer is spotting they keep their head in the same position for as long as possible. Then they quickly rotate it around, back to the same position.

Why do we feel dizzy when we spin? ›

If you spin around really fast, the fluid in your ear moves really fast too. This is what happens when you first start to feel dizzy. When you stop spinning, your head stops moving but the fluid in the tube of the balance organ keeps spinning. So now your brain thinks you are spinning in the opposite direction.

Why does a spinning figure skater spin faster when she brings her arms in close to her chest? ›

When she moves her arms close to her body, she spins faster. Her moment of inertia decreases, so her angular velocity must increase to keep the angular momentum constant.

Why a spinning figure skater will spin faster if she pulls in her arms while spinning this action? ›

By pulling in her arms, a figure skater reduces her moment of inertia, which in turn causes her angular velocity to increase.

Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 5812

Rating: 4.1 / 5 (62 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.