The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia (2024)

1. Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541. Int J Phytoremediation. 2012;14:261–274. [PubMed] [Google Scholar]

2. Ahmad K. Report highlights widespread arsenic contamination in Bangladesh. The Lancet. 2001;358(9276):133. [Google Scholar]

3. Alberti KG, Zimmet PF. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Med. 1998;15:539–553. [PubMed] [Google Scholar]

4. Al-Othman ZA, Ali R, Al-Othman AM, Ali J, Habila MA. Assessment of toxic metals in wheat crops grown on selected soils, irrigated by different water sources. Arabian J Chem. 2016;9(Suppl 2):S1555–S1562. [Google Scholar]

5. Anjana RM, Ali MK, Pradeepa R, Deepa M, Datta M, Unnikrishnan R, et al. The need for obtaining accurate nationwide estimates of diabetes prevalence in India-rationale for a national study on diabetes. Indian J Med Res. 2011;133:369. [PMC free article] [PubMed] [Google Scholar]

6. Arain MB, Kazi TG, Baig JA, Jamali MK, Afridi HI, Shah AQ, et al. Determination of arsenic levels in lake water, sediment, and foodstuff from selected area of Sindh, Pakistan: estimation of daily dietary intake. Food Chem Toxicol. 2009;47:242–248. [PubMed] [Google Scholar]

7. Bahadar H, Mostafalou S, Abdollahi M. Growing burden of diabetes in Pakistan and the possible role of arsenic and pesticides. J Diab Metab Disord. 2014;13(1):117. [PMC free article] [PubMed] [Google Scholar]

8. Baldwin K, Childs N, Dyck J, Hansen J. Southeast Asia’s rice surplus. Washington DC: US Department of Agriculture; 2012. (Outlook No. RCS-12I-01). [Google Scholar]

9. Banerjee S, Majumdar J, Samal AC, Bhattachariya P, Santra SC. Biotransformation and bioaccumulation of arsenic by Brevibacillus brevis isolated from arsenic contaminated region of West Bengal. IOSR J Environ Sci Toxicol Food Technol. 2013;3(1):1–10. [Google Scholar]

10. Bhattacharya P, Samal AC, Majumdar J, Santra SC. Arsenic contamination in rice, wheat, pulses, and vegetables: a study in an arsenic affected area of West Bengal, India. Water Air Soil Pollut. 2010;213:3–13. [Google Scholar]

11. Bogdan K, Schenk MK. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol. 2008;42:7885–7890. [PubMed] [Google Scholar]

12. Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int. 2009;35:647–654. [PubMed] [Google Scholar]

13. Chakraborti D, Basu GK, Biswas BK, Chowdhury UK, Rahman MM, Paul K, et al. Characterization of arsenic bearing sediments in Gangetic delta of West Bengal-India. In: Chappel WR, Abernathy CO, Calderson RL, editors. Arsenic exposure and health effects. New York: Elsevier Science; 2001. pp. 27–52. [Google Scholar]

14. Chan JC, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon KH, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–2140. [PubMed] [Google Scholar]

15. Chao DY, Chen Y, Chen J, Shi S, Chen Z, Wang C, et al. Genome-wide association mapping identifies a new arsenate reductase enzyme critical for limiting arsenic accumulation in plants. PLoS Biol. 2014;12(12):e1002009. [PMC free article] [PubMed] [Google Scholar]

16. Chen CJ, Chen CW, Wu MM, Kuo TL. Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer. 1992;66:888–892. [PMC free article] [PubMed] [Google Scholar]

17. Chibuike GU, Obiora SC. Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci. 2014;2014 [Google Scholar]

18. Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int. 2004;30:383–387. [PubMed] [Google Scholar]

19. Del Razo LM, García-Vargas GG, Valenzuela OL, Castellanos EH, Sánchez-Peña LC, Currier JM, et al. Exposure to arsenic in drinking water is associated with increased prevalence of diabetes: a cross-sectional study in the Zimapan and Lagunera regions in Mexico. Environ Health. 2011;10:73. [PMC free article] [PubMed] [Google Scholar]

20. Díaz-Villaseñor A, Cruz L, Cebrián A, Hernández-Ramírez RU, Hiriart M, García-Vargas G, et al. Arsenic exposure and calpain-10 polymorphisms impair the function of pancreatic beta-cells in humans: a pilot study of risk factors for T2DM. PloS One. 2013;8(1):e51642. [PMC free article] [PubMed] [Google Scholar]

21. Duxbury JM, Panullah G, Koo-Oshima S. Remediation of arsenic for agriculture sustainability, food security and health in Bangladesh. Working paper. Rome: FAO; 2007. [Google Scholar]

22. Ettinger AS, Zota AR, Amarasiriwardena CJ, Hopkins MH, Schwartz J, Hu H, et al. Maternal arsenic exposure and impaired glucose tolerance during pregnancy. Environ Health Perspect. 2009;117:1059–1064. [PMC free article] [PubMed] [Google Scholar]

23. Ferrara A. Increasing prevalence of gestational diabetes mellitus. Diabetes Care. 2007;30(Suppl 2):S141–S146. [PubMed] [Google Scholar]

24. Frayn KN. Adipose tissue and the insulin resistance syndrome. Proc Nutr Soc. 2001;60:375–380. [PubMed] [Google Scholar]

25. Fröjdö S, Vidal H, Pirola L. Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochim Biophys Acta. 2009;1792:83–92. [PubMed] [Google Scholar]

26. Guo HR, Lipsitz SR, Hu H, Monson RR. Using ecological data to estimate a regression model for individual data: the association between arsenic in drinking water and incidence of skin cancer. Environ Res. 1998;79:82–93. [PubMed] [Google Scholar]

27. Gupta R, Misra A. Type 2 diabetes in India: regional disparities. Brit J Diab Vascular Dis. 2007;7(1):12–16. [Google Scholar]

28. Henke KR. Arsenic: environmental chemistry, health threats and waste treatment. New York: Wiley; 2009. [Google Scholar]

29. Herce-Pagliai C, Moreno I, Gonzalez G, Repetto M, Cameán AM. Determination of total arsenic, inorganic and organic arsenic species in wine. Food Addit Contam. 2002;19:542–546. [PubMed] [Google Scholar]

30. Hodjat M, Rahmani S, Khan F, Niaz K, Navaei-Nigjeh M, Mohammadi Nejad S, et al. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol. 2017;91:2577–2597. [PubMed] [Google Scholar]

31. Holt RI. Diagnosis, epidemiology and pathogenesis of diabetes mellitus: an update for psychiatrists. Br J Psychiatry Suppl. 2004;47:S55–S63. [PubMed] [Google Scholar]

32. Hossain MF. Arsenic contamination in Bangladesh - an overview. Agricult Ecosyst Environ. 2006;113:1–16. [Google Scholar]

33. Huang CF, Chen YW, Yang CY, Tsai KS, Yang RS, Liu SH. Arsenic and diabetes: current perspectives. Kaohsiung J Med Sci. 2011;27:402–410. [PubMed] [Google Scholar]

34. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, et al. Arsenic exposure and glucose intolerance/insulin resistance in estrogen-deficient female mice. Environ Health Perspect. 2015;123:1138–1144. [PMC free article] [PubMed] [Google Scholar]

35. International Diabetes Federation. 7th ed. Brussels: International Diabetes Federation; 2015. IDF Diabetes Atlas. Available from: http://www.diabetesatlas.org. [PubMed] [Google Scholar]

36. Islam MR, Khan I, Hassan SN, McEvoy M, D’Este C, Attia J, et al. Association between type 2 diabetes and chronic arsenic exposure in drinking water: a cross sectional study in Bangladesh. Environ Health. 2012;11(1):38. [PMC free article] [PubMed] [Google Scholar]

37. Izquierdo-Vega JA, Soto CA, Sanchez-Peña LC, De Vizcaya-Ruiz A, Del Razo LM. Diabetogenic effects and pancreatic oxidative damage in rats subchronically exposed to arsenite. Toxicol Lett. 2006;160:135–142. [PubMed] [Google Scholar]

38. Jackson BP, Taylor VF, Karagas MR, Punshon T, Cottingham KL. Arsenic, organic foods and brown rice syrup. Environ Health Perspect. 2012;120:623–626. [PMC free article] [PubMed] [Google Scholar]

39. Jayasumana C, Fonseka S, Fernando A, Jayalath K, Amarasinghe M, Siribaddana S, et al. Phosphate fertilizer is a main source of arsenic in areas affected with chronic kidney disease of unknown etiology in Sri Lanka. SpringerPlus. 2015;4:90. [PMC free article] [PubMed] [Google Scholar]

40. Johnson JD, Luciani DS. Mechanisms of pancreatic β-cell apoptosis in diabetes and its therapies. Adv Exp Med Biol. 2010;654:447–462. [PubMed] [Google Scholar]

41. Jovanovic D, Rasic-Milutinovic Z, Paunovic K, Jakovljevic B, Plavsic S, Milosevic J. Low levels of arsenic in drinking water and type 2 diabetes in Middle Banat region, Serbia. Int J Hyg Environ Health. 2013;216:50–55. [PubMed] [Google Scholar]

42. Kaplan RD. South Asia's geography of conflict. Washington, DC: Center for a New American Security; 2010. [Google Scholar]

43. Khan F, Momtaz S, Niaz K, Hassan FI, Abdollahi M. Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol. 2017;107:406–417. [PubMed] [Google Scholar]

44. Kohei KA. Pathophysiology of type 2 diabetes and its treatment policy. JMAJ. 2010;53:41–46. [Google Scholar]

45. Laparra JM, Vélez D, Barberá R, Farré R, Montoro R. Bioavailability of inorganic arsenic in cooked rice: practical aspects for human health risk assessments. J Agric Food Chem. 2005;53:8829–8833. [PubMed] [Google Scholar]

46. Lewis AS. Organic versus inorganic arsenic in herbal kelp supplements. Environ Health Perspect. 2007;115(12):A575. [PMC free article] [PubMed] [Google Scholar]

47. Li RY, Stroud JL, Ma JF, McGrath SP, Zhao FJ. Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ Sci Technol. 2009;43:3778–3783. [PubMed] [Google Scholar]

48. Lin J, Lin GF, Li YL, Gao XY, Du H, Jia CG, et al. Assessment of usefulness of synchrotron radiation techniques to determine arsenic species in hair and rice grain samples. EXCLI J. 2017;16:25–34. [PMC free article] [PubMed] [Google Scholar]

49. Liu J, Zheng B, Aposhian HV, Zhou Y, Chen ML, Zhang A, et al. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect. 2002;110:119–122. [PMC free article] [PubMed] [Google Scholar]

50. Liu S, Guo X, Wu B, Yu H, Zhang X, Li M. Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep. 2014;4:6894. [PMC free article] [PubMed] [Google Scholar]

51. Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, et al. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Nat Acad Sci USA. 2008;105:9931–9935. [PMC free article] [PubMed] [Google Scholar]

52. Mallick I, Hossain ST, Sinha S, Mukherjee SK. Brevibacillus sp. KUMAs2, a bacterial isolate for possible bioremediation of arsenic in rhizosphere. Ecotoxicol Environ Saf. 2014;107:236–244. [PubMed] [Google Scholar]

53. Marin AR, Masscheleyn PH, Patrick WH., Jr Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil. 1993;152:245–253. [Google Scholar]

54. Meharg AA. Arsenic in rice - understanding a new disaster for South-East Asia. Trends Plant Sci. 2004;9:415–417. [PubMed] [Google Scholar]

55. Meharg AA, Jardine L. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytologist. 2003;157:39–44. [PubMed] [Google Scholar]

56. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, et al. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol. 2009;43:1612–1617. [PubMed] [Google Scholar]

57. Mei XQ, Ye ZH, Wong MH. The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut. 2009;157:2550–2557. [PubMed] [Google Scholar]

58. Misbahuddin M. Consumption of arsenic through cooked rice. The Lancet. 2003;361(9355):435–436. [PubMed] [Google Scholar]

59. Mostafalou S, Abdollahi M. Pesticides: an update of human exposure and toxicity. Arch Toxicol. 2017;91:549–599. [PubMed] [Google Scholar]

60. Mukherjee A, Sengupta MK, Hossain MA, Ahamed S, Das B, Nayak B, et al. Arsenic contamination in groundwater: a global perspective with emphasis on the Asian scenario. J Health Popul Nutr. 2006;24:142–163. [PubMed] [Google Scholar]

61. Muñoz O, Bastias JM, Araya M, Morales A, Orellana C, Rebolledo R, et al. Estimation of the dietary intake of cadmium, lead, mercury, and arsenic by the population of Santiago (Chile) using a Total Diet Study. Food Chem Toxicol. 2005;43:1647–1655. [PubMed] [Google Scholar]

62. Ng MC, Lee SC, Ko GT, Li JK, So WY, Hashim Y, et al. Familial early-onset type 2 diabetes in Chinese patients: obesity and genetics have more significant roles than autoimmunity. Diabetes Care. 2001;24:663–671. [PubMed] [Google Scholar]

63. Niaz K, Maqbool F, Bahadar H, Abdollahi M. Can bacterium UD1023 lessen the uptake and bioaccumulation of heavy metals in plants? An update. EXCLI J. 2016;15:5–9. [PMC free article] [PubMed] [Google Scholar]

64. Njølstad PR, Sagen JV, Bjørkhaug L, Odili S, Shehadeh N, Bakry D, et al. Permanent neonatal diabetes caused by gluco*kinase deficiency inborn error of the glucose-insulin signaling pathway. Diabetes. 2003;52:2854–2860. [PubMed] [Google Scholar]

65. Pal A, Chowdhury UK, Mondal D, Das B, Nayak B, Ghosh A, et al. Arsenic burden from cooked rice in the populations of arsenic affected and nonaffected areas and Kolkata City in West-Bengal, India. Environ Sci Technol. 2009;43:3349–3355. [PubMed] [Google Scholar]

66. Patel HV, Kalia K. Sub-chronic arsenic exposure induces oxidative stress in skeletal muscle and epididymal fat pad: possible role in development of arsenic induced diabetes mellitus. J Cell Tissue Res. 2010;10:2397. [Google Scholar]

67. Paul DS, Harmon AW, Devesa V, Thomas DJ, Styblo M. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect. 2007;115:734–742. [PMC free article] [PubMed] [Google Scholar]

68. Rahman M, Tondel M, Ahmad SA, Axelson O. Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol. 1998;148:198–203. [PubMed] [Google Scholar]

69. Rahman MA, Hasegawa H. High levels of inorganic arsenic in rice in areas where arsenic-contaminated water is used for irrigation and cooking. Sci Total Environ. 2011;409:4645–4655. [PubMed] [Google Scholar]

70. Rahman MA, Hasegawa H, Rahman MA, Rahman MM, Miah MM. Influence of cooking method on arsenic retention in cooked rice related to dietary exposure. Sci Total Environ. 2006;370:51–60. [PubMed] [Google Scholar]

71. Rahman MA, Rahman IMM, Hasegawa H. Cooking: effects on dietary exposure to arsenic from rice and vegetables. In: Nriagu JO, editor. Encyclopedia of environmental health. Burlington, MA: Elsevier Science; 2011. pp. 828–833. [Google Scholar]

72. Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, et al. Chronic arsenic toxicity in Bangladesh and West Bengal, India - a review and commentary. J Toxicol Clin Toxicol. 2001;39:683–700. [PubMed] [Google Scholar]

73. Rajkumar M, Sandhya S, Prasad MN, Freitas H. Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Advances. 2012;30:1562–1574. [PubMed] [Google Scholar]

74. Ramachandran A, Snehalatha C, Satyavani K, Sivasankari S, Vijay V. Type 2 diabetes in Asian-Indian urban children. Diabetes Care. 2003;26:1022–1025. [PubMed] [Google Scholar]

75. Saha JC, Diksh*t AK, Bandyopadhyay M, Saha KC. A review of arsenic poisoning and its effects on human health. Crit Rev Environ Sci Technol. 1999;29:281–313. [Google Scholar]

76. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM, et al. A market basket survey of inorganic arsenic in food. Food Chem Toxicol. 1999;37:839–846. [PubMed] [Google Scholar]

77. Sen S, Chakraborty R, De B, Devanna N. Trends in diabetes epidemiology in Indian population in spite of regional disparities: a systemic review. Int J Diab Dev Countries. 2015;35:264–279. [Google Scholar]

78. Sengupta MK, Hossain MA, Mukherjee A, Ahamed S, Das B, Nayak B, et al. Arsenic burden of cooked rice: traditional and modern methods. Food Chem Toxicol. 2006;44:1823–1829. [PubMed] [Google Scholar]

79. Seyfferth AL, McCurdy S, Schaefer MV, Fendorf S. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia. Environ Sci Technol. 2014;48:4699–4706. [PubMed] [Google Scholar]

80. Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE, et al. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol. 2016;172:1708–1719. [PMC free article] [PubMed] [Google Scholar]

81. Shrestha RR, Shrestha MP, Upadhyay NP, Pradhan R, Khadka R, Maskey A, et al. Groundwater arsenic contamination, its health impact and mitigation program in Nepal. J Environ Sci Health Part A. 2003;38:185–200. [PubMed] [Google Scholar]

82. Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull WHO. 2000;78:1093–1103. [PMC free article] [PubMed] [Google Scholar]

83. Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, et al. A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Nat Acad Sci USA. 2014;111:15699–15704. [PMC free article] [PubMed] [Google Scholar]

84. Sun GX, Williams PN, Carey AM, Zhu YG, Deacon C, Raab A, et al. Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environ Sci. Technol. 2008;42:7542–7546. [PubMed] [Google Scholar]

85. Tabatabaei-Malazy O, Nikfar S, Larijani B, Abdollahi M. Drugs for the treatment of pediatric type 2 diabetes mellitus and related co-morbidities. Expert Opin Pharmacother. 2016;17:2449–2460. [PubMed] [Google Scholar]

86. Tandukar N, Neku A. Arsenic contamination in groundwater in Nepal - an overview. Fifth International Conference on Arsenic Exposure and Health Effects, San Diego, 2002; 2002. pp. 14–18. [Google Scholar]

87. Tseng CH. The potential biological mechanisms of arsenic-induced diabetes mellitus. Toxicol Applied Pharmacol. 2004;197:67–83. [PubMed] [Google Scholar]

88. Unnikrishnan R, Anjana RM, Mohan V. Diabetes in South Asians: is the phenotype different? Diabetes. 2014;63:53–55. [PubMed] [Google Scholar]

89. Walton FS, Harmon AW, Paul DS, Drobná Z, Patel YM, Styblo M. Inhibition of insulin-dependent glucose uptake by trivalent arsenicals: possible mechanism of arsenic-induced diabetes. Toxicol Applied Pharmacol. 2004;198:424–433. [PubMed] [Google Scholar]

90. Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, Zhang XD, et al. Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province, China. Environ Health Perspect. 2007;115:643–647. [PMC free article] [PubMed] [Google Scholar]

91. WHO, World Health Organization. Guidelines for drinking-water quality. Vol. 1, Recommendations. 3rd ed. Geneva: WHO; 2004. [Google Scholar]

92. Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, et al. Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwaters. Environ Sci Technol. 2006;40:4903–4908. [PubMed] [Google Scholar]

93. Williams PN, Price AH, Raab A, Hossain SA, Feldmann J, Meharg AA. Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol. 2005;39:5531–5540. [PubMed] [Google Scholar]

94. Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol. 2007;41:6854–6859. [PubMed] [Google Scholar]

95. Xu XY, McGrath SP, Meharg AA, Zhao FJ. Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol. 2008;42:5574–5579. [PubMed] [Google Scholar]

96. Yang Q, Tu S, Wang G, Liao X, Yan X. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L. Int J Phytoremediat. 2012;14:89–99. [PubMed] [Google Scholar]

97. Zavala YJ, Duxbury JM. Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environ Sci Technol. 2008;42:3856–3860. [PubMed] [Google Scholar]

98. Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytologist. 2009;181:777–794. [PubMed] [Google Scholar]

99. Zhao FJ, McGrath SP, Meharg AA. Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol. 2010;61:535–559. [PubMed] [Google Scholar]

The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia (2024)
Top Articles
Latest Posts
Article information

Author: Terrell Hackett

Last Updated:

Views: 6216

Rating: 4.1 / 5 (72 voted)

Reviews: 95% of readers found this page helpful

Author information

Name: Terrell Hackett

Birthday: 1992-03-17

Address: Suite 453 459 Gibson Squares, East Adriane, AK 71925-5692

Phone: +21811810803470

Job: Chief Representative

Hobby: Board games, Rock climbing, Ghost hunting, Origami, Kabaddi, Mushroom hunting, Gaming

Introduction: My name is Terrell Hackett, I am a gleaming, brainy, courageous, helpful, healthy, cooperative, graceful person who loves writing and wants to share my knowledge and understanding with you.