The Physics of Figure Skating (2024)

The Physics of Figure Skating (1)

To see physics in action in everyday life, look no further than figure skating.

And as the men hit the ice to show off their spins and combinations Tuesday in the Winter Olympics, here's a perfect chance to watch examples of basic scientific concepts, such as friction, momentum, and the law of equal and opposite reactions.

Friction

On one level, the difference between dancing on a floor and skating on ice is the lack of friction. Smooth ice provides very little resistance against objects, like ice skates, being dragged across its surface. Compared to, say, a wooden floor, ice has much less friction.

So what is friction exactly? It's a force that resists when two objects slide against each other, dissipating their energy of motion. Friction arises because the molecules on both surfaces bond with each other, and resist when the surfaces try to move away and break the bonds. The more rough and jagged something is, the more easily more of its molecules will come into contact with molecules on the surface it touches, and thus the greater force of friction they will exert.

The general low level of friction on ice allows a skater to glide along the surface smoothly without friction stopping the motion as soon as it's begun.

Remember Isaac Newton's first law of motion — an object in motion tends to stay in motion unless acted on by a force? This concept is also known as inertia, and it's why ice skaters, whose motion isn't being acted on by a powerful enough force of friction, tend to stay in motion unless they use force to stop themselves.

At the same time, if there were no friction at all on ice, skating would be impossible, because it is the friction between the skate and the ice when a skater pushes off that starts the motion to begin with. And friction is also what allows a skater to ever come to a stop.

Momentum

Momentum, which is basically how much force it would take to stop a moving object. Essentially, the heavier something is and the faster it's going, the more momentum it will have, and the harder it will be to slow it down.

Angular momentum applies to a body rotating around a fixed object. The amount of angular momentum, say, a spinning skater has depends on both the speed of rotation, and the weight and distribution of mass around the center. So, for two skaters of the same mass rotating at the same speed, the one with its mass more extended in space will have the greater angular momentum.

A fundamental law of physics holds that momentum is always conserved, meaning that unless some outside force enters a system, its total momentum must stay constant.

This law of physics explains why when a figure skater pulls in her arms when executing a turn, she spins more quickly. With arms outstretched, her mass is distributed over a greater space. When she draws her arms inwards, that distribution is reduced, so her speed must pick up to counteract this difference and keep her total momentum constant.

Newton's Third Law

One of the most well known tenets of physics — for every action, there is an equal and opposite reaction — was first discovered by Isaac Newton.

And it's this idea that allows skaters to move across the ice. When they push off against the ice, or "stroke" with their skates, they are applying a force down and back against the ground. Well, the ground just pushes right back, supplying a force forward and up that propels the skaters into a glide or jump, depending on the particulars of the force they applied.

Since the forward push is resisted only by the slight friction of the ice, the skater can glide easily.

  • Quiz: Test Your Olympic Knowledge
  • The 5000-Year-Old Origin of Ice Skating
  • How the Olympics Changed the World

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

The Physics of Figure Skating (2)

Clara Moskowitz

Clara has a bachelor's degree in astronomy and physics from Wesleyan University, and a graduate certificate in science writing from the University of California, Santa Cruz. She has written for both Space.com and Live Science.

More about physics mathematics

1st evidence of nuclear fission in stars hints at elements 'never produced on Earth'Electricity flows like water in 'strange metals,' and physicists don't know why

Latest

Stay hydrated for less with 20% off these excellent water bottles
See more latest►

Most Popular
Watch thousands of starlings perform an 'incredible ballet of life and death' in new murmuration footage

By Sascha Pare

Newly discovered Antarctic sea spider with 'boxing glove' claws pulled up from ocean floor

By Ethan Freedman

California redwoods 'killed' by wildfire come back to life with 2,000-year-old buds

By Jacklin Kwan

Elon Musk just teased Telsa’s new Optimus Gen-2 robot with a video featuring a funky treat at the end

By Keumars Afifi-Sabet

NASA shares incredible footage of Artemis I capsule hurtling through Earth's atmosphere after historic moon voyage

By Mike Wall

2,200-year-old tiles found in Jerusalem provide direct link to the history of Hanukkah

By Jennifer Nalewicki

Barringer Crater may have been formed by a cosmic 'curveball,' asteroid simulations show

By Deepa Jain

Drug prevents fentanyl overdose for a month in monkeys

By Emily Cooke

'Rare' disorder that causes extreme sleepiness may be more common than thought

By Emily Cooke

NASA's 46-year-old Voyager 1 probe is no longer transmitting data

By Josh Dinner

Humans are changing the moon's surface so much it's entered a new geological era, scientists say

By Ivan Paul

I'm an enthusiast and expert in physics with a deep understanding of the subject. Now, let's delve into the fascinating physics behind figure skating as highlighted in the provided article.

Friction: The article emphasizes the role of friction in figure skating. Friction is a force that resists motion when two surfaces slide against each other. In the context of figure skating, the smooth ice surface provides minimal resistance, allowing skaters to glide effortlessly. The article aptly connects this to Isaac Newton's first law of motion, highlighting the concept of inertia – an object in motion stays in motion unless acted upon by an external force.

It's crucial to note that while low friction allows smooth gliding, some friction is necessary for a skater to push off and initiate motion. The interaction between the skate and the ice, involving friction, is fundamental to the sport.

Momentum: Momentum is another key physics concept discussed in the article. It's the product of an object's mass and velocity, representing how difficult it is to stop a moving object. The article introduces angular momentum in the context of a spinning skater. Conservation of momentum is a fundamental law of physics, stating that the total momentum of a closed system remains constant unless an external force acts on it.

The explanation of why a skater spins more quickly when pulling in their arms relates to the conservation of angular momentum. By reducing the distribution of mass, the skater increases their rotational speed to maintain the overall momentum.

Newton's Third Law: The article also touches on Newton's Third Law – for every action, there is an equal and opposite reaction. In figure skating, this law explains how skaters move across the ice. When a skater pushes off against the ice, the ice exerts an equal and opposite force, propelling the skater forward. The interaction between the skater and the ice, combined with minimal friction, allows for graceful gliding.

In summary, figure skating beautifully demonstrates fundamental physics principles such as friction, momentum, angular momentum conservation, and Newton's Third Law. The application of these concepts adds a layer of scientific appreciation to the artistry of figure skating in the Winter Olympics.

The Physics of Figure Skating (2024)
Top Articles
Latest Posts
Article information

Author: Fredrick Kertzmann

Last Updated:

Views: 5817

Rating: 4.6 / 5 (46 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.